THE SPRING AND PNEUMATIC SUSPENSION VEHICLE OPEL VIVARO ELEMENTS STIFFNESS COEFFICIENT RESEARCH

Authors

  • Oleksandr Orysenko
  • Anatolii Kryvorot
  • Mykola Shapoval
  • Ivan Rohozin

DOI:

https://doi.org/10.26906/SUNZ.2025.2.027

Keywords:

metal elastic element, pneumatic elastic element, stiffness coefficient, Opel Vivaro, vehicle suspension

Abstract

The study investigates the stiffness characteristics of the spring and pneumatic suspension elements of an N1 category vehicle - Opel Vivaro. The relevance of the topic is driven by the need to improve the ride comfort of the vehicle, which directly affects the comfort and safety of both the driver and passengers. Particular attention is paid to the comparison between a traditional coil spring and a rolling-lobe type pneumatic element, as alternative suspension components in the modernization of the rear suspension of the Opel Vivaro. An analysis of existing regulations regarding human exposure to vibration (DSTU, ISO, EN, etc.) is conducted, along with consideration of physiological criteria for assessing vehicle ride comfort. It has been established that optimal suspension stiffness should minimize vertical body accelerations in accordance with permissible vibration exposure thresholds. The methodology of the study is based on loading the elastic element using external forces, which are applied during testing via a hydraulic jack equipped with a built-in pressure gauge. In this context, stiffness is examined as a function of pressure, height, and the effective area of the working elements. All input parameters were obtained experimentally. It was determined that for both the metallic and pneumatic elastic elements, the relationship between the restoring force and deformation within the working range can be described by a parabolic law. The obtained data were approximated using quadratic regression with high accuracy, as indicated by the R² coefficient. As a result of the comparative analysis, it was found that the pneumatic element exhibits variable stiffness, allowing the suspension to better adapt to driving conditions. This improves ride comfort, reduces accelerations transmitted to the vehicle body, and enables ride height adjustment based on load. The metallic element has a simpler design but provides a lower level of comfort, particularly under variable loads and as the metal ages. The obtained results can be used in the modernization of existing vehicles, as well as in the development of new suspension designs incorporating adaptive pneumatic systems. The use of pneumatic elements is especially advisable for vehicles where comfort, stability, and flexibility in chassis tuning are of primary importance.

Downloads

Download data is not yet available.

References

1. Бур’ян М.В. Плавність руху автобусів у взаємозв’язку з характеристиками підвіски та сидінь: автореферат дис. на здобуття наукового ступеня кандидата технічних наук: спец. 05.22.02 Автомобілі та трактори. Львів, 2020. 21 с

2. Наказ Мін-ва транспорту та зв'язку України від 12.04.2007 № 285 «Про затвердження Порядку визначення класу комфортності автобусів, сфери їхнього використання за видами сполучення та режимами сполучення та режимами руху».

3. ДСТУ EN ISO 5349-2:2005 Вібрація механічна. Вимірювання та оцінювання впливу на людину локальної вібрації. Частина 2. Практична настанова з вимірювання на робочому місці (EN ISO 5349-2:2001, IDT)

4. ISO 2631: Mechanical vibration and shock-evaluation of human exposure to whole-body vibration, second ed., ISO – International Organization for Standardization, 1997.

5. ДСТУ EN ISO 5349-1: 2005 Вібрація механічна. Вимірювання та оцінювання впливу на людину вібрації. Частина 1: Загальні вимоги (EN ISO 5349-1:2001, ІDT).

6. A. Goodarzi and A. Khajepour, “Vehicle suspension system technology and design,” Synthesis Lectures on Advances in Automotive Technology, Morgan and Claypool Publishers, vol. 1, no. 1, pp i–77, California, CA, USA, 2017.

7. P. Karimi Eskandary, A. Khajepour, A. Wong, and M. Ansari, “Analysis and optimization of air suspension system with independent height and sti9ness tuning,” Int. Journal of Automotive Technology, vol. 17, no. 5, pp. 807–816, 2016.

8. J.-J. Chen, Z.-H. Yin, X.-J. Yuan, G.-Q. Qiu, K.-H. Guo, and X.-L. Wang, “A re8ned sti9ness model of rolling lobe air spring with structural parameters and the sti9ness characteristics of rubber bellows,” Measurement, vol. 169, Article ID 108355, 2021.

9. F. L¨ocken and M. Welsch, “/e dynamic characteristic and hysteresis e9ect of an air spring,” International Journal of Applied Mechanics and Engineering, vol. 20, no. 1, pp. 127– 145, 2015.

10. R. Zhou, B. Zhang, and Z. Li, “Dynamic modeling and computer simulation analysis of the air spring suspension,” Journal of Mechanical Science and Technology, vol. 36, no. 4, pp. 1719–1727, 2022.

11. L. Q. Sun, Z. X. Li, X. F. Shen, and J. Y. Zhu, “Simulation and test study on dynamic characteristic of air spring with auxiliary chamber,” Applied Mechanics and Materials, vol. 341, pp. 391–394, 2013.

12. J.-J. Chen, Z.-H. Yin, S. Rakheja, J.-H. He, and K.-H. Guo, Тeoretical modelling and experimental analysis of the vertical sti9ness of a convoluted air spring including the efect of the stifness of the bellows,” Proceedings of the Institution of Mechanical Engineers- Part D: Journal of Automobile Engineering, vol. 232, no. 4, pp. 547–561, 2018.

13. Z. Yin, J. Jiang, and W.-B. Shangguan, “Complex stifness model of an air spring with auxiliary chamber considering inertial e9ects of gas in connecting pipeline,” Proceedings of the Institution of Mechanical Engineers- Part D: Journal of Automobile Engineering, vol. 237, no. 1, pp. 145–158, 2023.

14. Opel Vivaro: веб-сайт. URL: https://uk.wikipedia.org/wiki/Opel_Vivaro.

15. Карташов М. В. Імовірність, процеси, статистика. − Київ : ВПЦ Київський університет, 2007. − 504 с.

Published

2025-06-19

Issue

Section

Road, river, sea and air transport