Evaluation of efficiency of ordered statistics decoding for algebraic convolutional codes

Authors

  • M. Shtompel Ukrainian State University of Railway Transport
  • I. Kovtun Ukrainian State University of Railway Transport
  • I. Husyeva National Technical University “Igor Sikorsky Kyiv Polytechnic Institute”

DOI:

https://doi.org/10.26906/SUNZ.2025.1.209-212

Keywords:

algebraic convolutional codes, ordered statistics, decoding, efficiency, modeling, radio communication systems

Abstract

The paper considers the application of ordered statistics decoding to short algebraic convolutional codes. It is
shown that this approach is expedient to use for reliable transmission of service messages in control channels of modern radio
communication systems. The paper proposes an algorithm for software implementation of the process of noise-resistant information transmission for given conditions. The general principles and features of the implementation of the main stages of modeling are considered. The research was conducted for algebraic convolutional codes with maximum code distance for different
code constraint lengths. Decoding of these codes was implemented for two selected values of ordered statistics in additive white
Gaussian noise channel. In the developed software implementation, decoding was carried out according to the criterion of minimizing the weighted Hamming weight between the generated test codewords and the received word. The modeling was completed when the target value of the error rate was reached. According to the results of the conducted research, it was determined that
ordered statistics decoding is effective for short algebraic convolutional codes, especially in the range of high signal-to-noise
ratio. The presented decoding method is advisable to use to increase the efficiency of service information transmission based on
short algebraic convolutional codes in new generation radio communication systems.

Downloads

Download data is not yet available.

References

1. Aslam A. M., Chaudhary R., Bhardwaj A., Budhiraja I., Kumar N., Zeadally S. Metaverse for 6G and beyond: the next revolution and deployment challenges. IEEE Internet of Things Magazine. 2023. Vol. 6. No. 1. P. 32-39. https://doi.org/10.1109/IOTM.001.2200248. DOI: https://doi.org/10.1109/IOTM.001.2200248

2. Masaracchia A., Li Y., Nguyen K. K., Yin C., Khosravirad S. R., Benevides Da Costa D. UAV-enabled ultra-reliable lowlatency communications for 6G: a comprehensive survey. IEEE Access. 2021. Vol. 9. P. 137338–137352. https://doi.org/10.1109/ACCESS.2021.3117902. DOI: https://doi.org/10.1109/ACCESS.2021.3117902

3. Pocovi G., Kolding T., Pedersen K. I. On the cost of achieving downlink ultra-reliable low-latency communications in 5G networks. IEEE Access. 2022. Vol. 10. P. 29506–29513. https://doi.org/10.1109/ACCESS.2022.3158361. DOI: https://doi.org/10.1109/ACCESS.2022.3158361

4. Zhang H., Tong W. Channel coding for 6G extreme connectivity – requirements, capabilities, and fundamental tradeoffs. IEEE BITS the Information Theory Magazine. 2023. Vol. 3. No. 1. P. 54-66. https://doi.org/10.1109/MBITS.2023.3322978. DOI: https://doi.org/10.1109/MBITS.2023.3322978

5. Geiselhart M., Krieg F., Clausius J., Tandler D., Ten Brink S. 6G: a welcome chance to unify channel coding? IEEE BITS the Information Theory Magazine. 2023. Vol. 3. No. 1. P. 67-80. https://doi.org/10.1109/MBITS.2023.3322974. DOI: https://doi.org/10.1109/MBITS.2023.3322974

6. Wang Q., Cai S., Chen L., Ma X. Semi-LDPC convolutional codes: construction and low-latency windowed list decod-ing. Journal of Communications and Information Networks. 2021. Vol. 6. No. 4. P. 411-419. https://doi.org/10.23919/JCIN.2021.9663105. DOI: https://doi.org/10.23919/JCIN.2021.9663105

7. Martínez-Peñas U., Napp D. Locally repairable convolutional codes with sliding window repair. IEEE Transactions on Information Theory. 2020. Vol. 66. No. 8. P. 4935-4947. https://doi.org/10.1109/TIT.2020.2977638. DOI: https://doi.org/10.1109/TIT.2020.2977638

8. Gómez-Torrecillas J., Lobillo F.J., Navarro, G., Sánchez-Hernández J. P. Peterson–Gorenstein–Zierler algorithm for differential convolutional codes. Applicable Algebra in Engineering, Communication and Computing. 2021. 32. P. 321-344. https://doi.org/10.1007/s00200-020-00464-6. DOI: https://doi.org/10.1007/s00200-020-00464-6

9. Panchenko, S., Prykhodko, S., Kozelkov, S., Shtompel, M., Kosenko, V., Shefer, O., Dunaievska, O. Analysis of efficiency of the bioinspired method for decoding algebraic convolutional codes. Eastern-European Journal of Enterprise Technologies. 2019. 2(4 (98). P. 22–30. https://doi.org/10.15587/1729-4061.2019.160753. DOI: https://doi.org/10.15587/1729-4061.2019.160753

10. Приходько С.І., Штомпель М. А., Власов А. В. Принципи програмної реалізації біоінспірованого методу декодування алгебраїчних згорткових кодів. Інформаційно-керуючі системи на залізничному транспорті. 2019. № 2. C. 18-24. https://doi.org/10.18664/ikszt.v0i2.164877. DOI: https://doi.org/10.18664/ikszt.v0i2.164877

11. Shirvanimoghaddam M. et al. Short block-length codes for ultra-reliable low latency communications. IEEE Communications Magazine. 2019. Vol. 57. No. 2. P. 130–137. https://doi.org/10.1109/MCOM.2018.1800181. DOI: https://doi.org/10.1109/MCOM.2018.1800181

12. Yue C., Shirvanimoghaddam M., Vucetic B., Li Y. A revisit to ordered statistics decoding: distance distribution and decoding rules. IEEE Transactions on Information Theory. 2021. Vol. 67. No. 7. P. 4288–4337. https://doi.org/10.1109/TIT.2021.3078575. DOI: https://doi.org/10.1109/TIT.2021.3078575

13. Liang J., Wang Y., Cai S., Ma X. A low-complexity ordered statistic decoding of short block codes. IEEE Communications Letters. 2023. Vol. 27. No. 2. P. 400–403. https://doi.org/10.1109/LCOMM.2022.3222819. DOI: https://doi.org/10.1109/LCOMM.2022.3222819

14. Yue C., Shirvanimoghaddam M., Park G., Park O.-S., Vucetic B., Li Y. Probability-based ordered-statistics decoding for short block codes. IEEE Communications Letters. 2021. Vol. 25. No. 6. P. 1791–1795. https://doi.org/10.1109/LCOMM.2021.3058978. DOI: https://doi.org/10.1109/LCOMM.2021.3058978

Published

2025-03-12

Issue

Section

Communication, telecommunications and radio engineering