Method for forming a subsystem for processing operative transactions of the ІоТ
DOI:
https://doi.org/10.26906/SUNZ.2025.1.107-110Keywords:
Internet of Things, operational transaction, fog layer, network nodeAbstract
Topicality. Internet of Things transactions are usually processed in cloud data centers. However, when it is
necessary to process operational transactions, there are time delays associated with data transfer to the cloud environment. This
problem can be solved by transferring calculations to layers close to IoT sensors. The purpose of the article is to develop a method
for forming a subsystem for processing operational transactions of the Internet of Things, focused on the boundary and fog layers
of the cloud environment. Research results. A mathematical model of the process of processing operational transactions is proposed.
Based on the model, a method has been developed that allows taking into account the specific features of the lower layers of the
cloud environment supporting the Internet of Things and choosing the most appropriate option for building a subsystem for processing operational transactions of the Internet of Things. Conclusion. The developed method allows you to meet the QoS requirements for operational transactions of the Internet of Things.
Downloads
References
1. Fabre, W., Haroun, K., Lorrain, V., Lepecq, M. and Sicard, G. (2024), “From Near-Sensor to In-Sensor: A State-of-the-Art Review of Embedded AI Vision Systems”, Sensors, vol. 24(16), 5446, doi: https://doi.org/10.3390/s24165446 DOI: https://doi.org/10.3390/s24165446
2. Zhang, Z. (2023), “A computing allocation strategy for Internet of things’ resources based on edge computing”, International Journal of Distributed Sensor Networks, vol. 17(12), doi: https://doi.org/10.1177/15501477211064800 DOI: https://doi.org/10.1177/15501477211064800
3. Sharma, A. and Singh, N. (2022), “Sensors, Embedded Systems, and IoT Components”, Mathematical Modeling for Intelligent Systems: Theory, Methods, and Simulation, pp. 1–15, doi: 10.1201/9781003291916-1 DOI: https://doi.org/10.1201/9781003291916-1
4. Aburukba, R.O., Landolsi, T. and Omer, D. (2021), “A heuristic scheduling approach for fog-cloud computing environment with stationary IoT devices”, Journal of Network and Computer Applications, vol. 180, no. 102994, doi: https://doi.org/10.1016/j.jnca.2021.102994 DOI: https://doi.org/10.1016/j.jnca.2021.102994
5. Li, W., Zhao, B., Zhu, L., Yixuan W., Zhong, Q. and Yu, S. (2024), “TCEC: Integrity Protection for Containers by Trusted Chip on IoT Edge Computing Nodes”, IEEE Sensors Journal, doi: https://doi.org/10.1109/JSEN.2024.3445576 DOI: https://doi.org/10.1109/JSEN.2024.3445576
6. Nechausov A., Mamusuĉ I., Kuchuk N. Synthesis of the air pollution level control system on the basis of hyperconvergent infrastructures. Сучасні інформаційні системи. 2017. Т. 1, № 2. С. 21 – 26. DOI: https://doi.org/10.20998/2522-9052.2017.2.04 DOI: https://doi.org/10.20998/2522-9052.2017.2.04
7. Кучук Н. Г., Мерлак В. Ю., Скородєлов В. В. Метод зменшення часу доступу до слабкоструктурованих даних. Сучасні інформаційні системи. 2020. Т. 4, № 1. С. 97-102. doi: https://doi.org/10.20998/2522-9052.2020.1.14 DOI: https://doi.org/10.20998/2522-9052.2020.1.14
8. Kovalenko, A. and Kuchuk, H. (2022), “Methods to Manage Data in Self-healing Systems”, Studies in Systems, Decision and Control, Vol. 425, pp. 113–171, doi: https://doi.org/10.1007/978-3-030-96546-4_3 DOI: https://doi.org/10.1007/978-3-030-96546-4_3
9. Kuchuk, N., Kovalenko, A., Ruban, I., Shyshatskyi, A., Zakovorotnyi, O. and Sheviakov, I. (2023), “Traffic Modeling for the Industrial Internet of NanoThings”, 2023 IEEE 4th KhPI Week on Advanced Technology, KhPI Week 2023 - Conference Proceedings, 2023, doi: 194480. http://dx.doi.org/10.1109/KhPIWeek61412.2023.10312856 DOI: https://doi.org/10.1109/KhPIWeek61412.2023.10312856
10. Krishnan, S. and Ilmudeen, A. (2023), “Internet of Medical Things in Smart Healthcare: Post-COVID-19 Pandemic Scenario”, Imprint Apple Academic Press, New York, doi: http://dx.doi.org/10.1201/9781003369035 DOI: https://doi.org/10.1201/9781003369035
11. Kuchuk G., Kovalenko A., Komari I.E., Svyrydov A., Kharchenko V. Improving big data centers energy efficiency: Traffic based model and method. Studies in Systems, Decision and Control, vol 171. Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (Eds.). Springer Nature Switzerland AG, 2019. Pp. 161-183. DOI: http://doi.org/10.1007/978-3-030-00253-4_8 DOI: https://doi.org/10.1007/978-3-030-00253-4_8
12. Dotsenko, N., Chumachenko, I., Galkin, A., Kuchuk, H. and Chumachenko, D. (2023), “Modeling the Transformation of Configuration Management Processes in a Multi-Project Environment”, Sustainability (Switzerland), Vol. 15(19), 14308, doi: https://doi.org/10.3390/su151914308 DOI: https://doi.org/10.3390/su151914308
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.