System of methodological and instrumental tools for automated analysis of UX research data using artificial intelligence systems
DOI:
https://doi.org/10.26906/SUNZ.2025.1.96-106Keywords:
UX research, automation, data analysis, neural networks, expert systems, web-interfaceAbstract
The article is dedicated to the automated analysis of user experience (UX) research results using artificial intelligence systems, particularly neural networks and expert systems. The aim of the research is to develop a system of methodological
and instrumental tools for automating UX research data analysis through the integration of artificial intelligence technologies and
expert systems. The relevance of automating the processing of large volumes of heterogeneous data obtained from user interaction
research with digital products has been analyzed. A classification of user interaction research methods and digital products by data
types and an approach to selecting appropriate neural network architectures for their analysis are proposed. The possibilities of
using recurrent and convolutional neural networks as examples for processing text, audio, and video data are examined. The use of
an expert system for automated selection of neural networks optimal for analyzing various types of data is also proposed. A trial
version of the system using artificial intelligence API has been developed and tested, confirming the possibility of automated
processing of various types of UX research data using neural networks. Prospects for further development of the UX research data
analysis system are outlined, including software development, functionality expansion, and adaptation for related fields. The research results have practical significance for improving the efficiency of data analysis and can be used to enhance the interface
design process.
Downloads
References
1. Nielsen J. Usability 101: Introduction to Usability [Електронний ресурс] / J. Nielsen. – 2012. – Режим доступу: https://www.nngroup.com/articles/usability-101-introduction-to-usability/ – Дата звернення: 01.02.2023.
2. ISO 9241-11:2018(en), Ergonomics of human-system interaction - Part 11: Usability: Definitions and concepts [Електронний ресурс]. – Режим доступу: https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:vl:en
3. Farooqui T. Impact of Human-Centered Design Process (HCDP) on software development process / T. Farooqui, T. Rana, F. Jafari // Proceedings of the 2nd International Conference on Communication, Computing and Digital systems (C-CODE 2019). – Institute of Electrical and Electronics Engineers, 2019. – P. 110-114. – Режим доступу: https://doi.org/10.1109/CCODE.2019.8680978 DOI: https://doi.org/10.1109/C-CODE.2019.8680978
4. Tsui A.S.M., Kuzminykh A. Detect and interper: towards operatinalization of automated user experience evaluation. Design User Experience and Usability. 2020. P. 82-96. URL: https://dl.acm.org/doi/10.1007/978-3-031-35702-2_6 DOI: https://doi.org/10.1007/978-3-031-35702-2_6
5. Robinson J. The past, present, and future of UX empirical research / J. Robinson, C. Lanius, R. Weber // Commun. Des. Q. Rev. – 2018. – Vol. 5. – P. 10-23. – Режим доступу: https://doi.org/10.1145/3188173.3188175 DOI: https://doi.org/10.1145/3188173.3188175
6. Abrahams A. S. An integrated text analytic framework for product defect discovery / A. S. Abrahams, W. Fan, G. A. Wang, Z. J. Zhang, J. Jiao // Prod. Oper. Manag. – 2015. – Vol. 24. – P. 975-990. – Режим доступу: https://doi.org/10.1111/poms.12303 DOI: https://doi.org/10.1111/poms.12303
7. Wang R. UX Calculator: An online tool to support user testing / R. Wang, S.-L. Chen, C. Labbé, M. Fredette, A. Abdessemed, F. Courtemanche, C. K. Coursaris, S. Senécal, P.-M. Léger // [Б. м. : б. в.].
8. Doulamis A. D. On-line retrainable neural networks: improving the performance of neural networks in image analysis problems / A. D. Doulamis, N. D. Doulamis, S. D. Kollias. URL: https://ieeexplore.ieee.org/abstract/document/822517
9. Jayanthiladevi A. AI in Video Analysis, Production and Streaming Delivery [Електронний ресурс] / A. Jayanthiladevi, A. G. Raj, R. Narmadha, S. Chandran, S. Shaju, K. K. Prasad. – Режим доступу: https://iopscience.iop.org/article/10.1088/1742- 6596/1712/1/012014/meta DOI: https://doi.org/10.1088/1742-6596/1712/1/012014
10. Fleury, S., & Chaniaud, N. (2023). Multi-user centered design: acceptance, user experience, user research and user testing. Behaviour & Information Technology, 42(3), 209-224. URL: https://www.tandfonline.com/doi/full/10.1080/1463922X.2023.2166623 DOI: https://doi.org/10.1080/1463922X.2023.2166623
11. Salem, F. M. (2023). Recurrent Neural Networks: From Simple to Gated Architectures. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-89929-5
12. Okut, H. (2021). Deep Learning: Long-Short Term Memory. University of Kansas Medical Center. https://www.researchgate.net/publication/352383391_Deep_Learning_Long-Short_Term_Memory
13. Khodambashi, S., Øvrelid, E. A., Pedersen, S. A., & Jørstad, I. (2020). User involvement and experimentation for technology adoption in hospitals: A conceptual study and research agenda. SN Applied Sciences, 2(1), 76. — Режим доступу: https://doi.org/10.1007/s13748-019-00203-0 DOI: https://doi.org/10.1007/s13748-019-00203-0
14. Aljarrah I. Video content analysis using convolutional neural networks [Електронний ресурс] / I. Aljarrah, D. Mohammad. – Режим доступу: https://ieeexplore.ieee.org/abstract/document/8355453
15. Kumar A. Image Sentiment Analysis Using Convolutional Neural Network [Електронний ресурс] / A. Kumar, A. Jaiswal. – Режим доступу: https://link.springer.com/chapter/10.1007/978-3-319-76348-4_45
16. Sony Corporation. (2023). Neural Network Console [Електронний ресурс]. Режим доступу: https://dl.sony.com/
17. Microsoft Research. (2023). Archai: Platform for Neural Architecture Search [Електронний ресурс]. Режим доступу: https://www.microsoft.com/en-us/research/project/archai-platform-for-neural-architecture-search/
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.