REVIEW OF METHODS FOR EMBEDDING DIGITAL WATERMARKS FOR AUDIO FILE PROTECTION

Authors

  • Roman Rastegayev
  • Vitalii Martovytskyi
  • Natalia Bolohova
  • Bohdan Filonenko
  • Oleksandr Chechui

DOI:

https://doi.org/10.26906/SUNZ.2024.4.132

Keywords:

steganography, digital watermark, information protection, audio information protection

Abstract

The article presents an analysis of modern approaches to audio information protection using digital watermarks. It discusses various watermark embedding methods, including those based on the time, frequency, and timefrequency domains. Special attention is given to the characteristics of watermark robustness and imperceptibility, which are critical for ensuring high sound quality and reliable protection against attacks. Methods based on transformations, such as the discrete cosine transform (DCT), as well as adaptive approaches that take into account the properties of audio files, are analyzed. The article also provides an overview of criteria for evaluating the effectiveness of watermarking methods, such as signal-to-noise ratio (SNR) and detection probability. The conclusions of the study emphasize the need for careful selection of methods to achieve an optimal balance between protection, sound quality, and resistance to manipulation.

Downloads

Download data is not yet available.

References

Corporate Kaijus Clash: 15 Famous Copyright Infringement Cases [Електронний ресурс]. – Режим доступу: https://www.abounaja.com/blogs/copyright-infringement-cases

Zhou, N.R., Hou, W.M.X., Wen, R.H. et al. Imperceptible digital watermarking scheme in multiple transform domains. Multimed Tools Appl 77, 30251–30267 (2018). https://doi.org/10.1007/s11042-018-6128-9

Hosny, Khalid M., and Mohamed M. Darwish. "Invariant image watermarking using accurate polar harmonic transforms."Computers & Electrical Engineering 62 (2017): 429-447. https://doi.org/10.1016/j.compeleceng.2017.05.015

Tao, H., Chongmin, L., Zain, J. M., & Abdalla, A. N. (2014). Robust image watermarking theories and techniques: A review. Journal of applied research and technology, 12(1), 122-138.

Yuan, X. C., & Li, M. (2018). Local multi-watermarking method based on robust and adaptive feature extraction. Signal Processing, 149, 103-117. https://doi.org/10.1016/j.sigpro.2018.03.007

Yamni, M., Karmouni, H., Sayyouri, M., & Qjidaa, H. (2022). Efficient watermarking algorithm for digital audio/speech signal. Digital Signal Processing, 120, 103251. https://doi.org/10.1016/j.dsp.2021.103251

M. Torcoli, T. Kastner and J. Herre, "Objective Measures of Perceptual Audio Quality Reviewed: An Evaluation of Their Application Domain Dependence," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, pp. 1530-1541, 2021, doi: 10.1109/TASLP.2021.3069302.

P. M. Delgado and J. Herre, "A Data-Driven Cognitive Salience Model for Objective Perceptual Audio Quality Assessment," ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 2022, pp. 986-990, doi: 10.1109/ICASSP43922.2022.9747064.

Greenspun, Philip, and Leigh Klotz. "Audio analysis VI: testing audio cables." Computer Music Journal 12.1 (1988): 58-64.

Streijl, R.C., Winkler, S. & Hands, D.S. Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives. Multimedia Systems 22, 213–227 (2016). https://doi.org/10.1007/s00530-014-0446-1

J. Zhang, K. Tan, J. Zhao, H. Wu and Y. Zhang, "A Practical SNR-Guided Rate Adaptation," IEEE INFOCOM 2008 - The 27th Conference on Computer Communications, Phoenix, AZ, USA, 2008, pp. 2083-2091, doi:10.1109/INFOCOM.2008.274.

Deller Jr, John R., John G. Proakis, and John H. Hansen. Discrete time processing of speech signals. Prentice Hall PTR, 1993.

Moore, J. K., & Linthicum, F. H. (2007). The human auditory system: A timeline of development. International Journal of Audiology, 46(9), 460–478. https://doi.org/10.1080/14992020701383019

Vecchi, A. O., Varnet, L., Carney, L. H., Dau, T., Bruce, I. C., Verhulst, S., & Majdak, P. (2022). A comparative study of eight human auditory models of monaural processing. Acta Acustica, 6, 17. https://doi.org/10.1051/aacus/2022008

Becerra Martinez, H.; Hines, A.; Farias, M.C.Q. Perceptual Quality of Audio-Visual Content with Common Video and Audio Degradations. Appl. Sci. 2021, 11, 5813. https://doi.org/10.3390/app11135813

Kabal, Peter. "An examination and interpretation of ITU-R BS. 1387: Perceptual evaluation of audio quality." TSP Lab Technical Report, Dept. Electrical & Computer Engineering, McGill University (2002): 1-89.

Juliy, Boiko; Andriy, Mokrytsky; Ilya, Pyatin. ДОСЛІДЖЕННЯ КІЛ СИНХРОНІЗАЦІЇ ЦИФРОВИХ СИСТЕМ ЗВ’ЯЗКУ. Хмельницького національного університету, 2022, 113. DOI 10.31891/2307-5732-2022-313-5-113-121

Griffiths, Dawn. Head first statistics. O'Reilly Germany, 2008.

Y. Xiong and Z. X. Ming, “Covert Communication Audio Watermarking Algorithm Based on LSB,” International Conference on Communication Technology, ICCT 06, pp. 1-4, 2006.

B. S. Ko, R. Nishimura, and Y. Suzuki, “Time-spread Echo Method for Digital Audio Watermarking,” IEEE Transactions on Multimedia, vol.7(2), pp. 212-221, 2005.

H. O. Oh, J. W. Seok, J. W. Hong, and D. H. Youn, “New Echo Embedding Technique for Robust and Imperceptible Audio Watermarking,” Proc. ICASSP 2001, pp. 1341-1344, 2001.

Wang, Xiang-Yang, Pan-Pan Niu, and Hong-Ying Yang. "A robust digital audio watermarking based on statistics characteristics." Pattern recognition 42.11 (2009): 3057-3064. https://doi.org/10.1016/j.patcog.2009.01.015

N. Cvejic and T. Seppänen, “Increasing robustness of LSB audio steganography by reduced distortion LSB coding,” Journal of University Computer Science, vol. 11(1), pp. 56-65, 2005.

N. Rashmi, "Analysis of Audio Steganography combined with Cryptography for RC4 and 3DES Encryption," 2020 Fourth International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 2020, pp. 210-214, doi:10.1109/ICISC47916.2020.9171142.

Gruhl, Daniel, Anthony Lu, and Walter Bender. "Echo hiding." Information Hiding: First International Workshop Cambridge, UK, May 30–June 1, 1996 Proceedings 1. Springer Berlin Heidelberg, 1996.

Huang, HN., Chen, ST., Lin, MS. et al. Optimization-Based Embedding for Wavelet-Domain Audio Watermarking. J Sign Process Syst 80, 197–208 (2015). https://doi.org/10.1007/s11265-013-0863-y

Masmoudi, S., Charfeddine, M. & Ben Amar, C. A Semi-Fragile Digital Audio Watermarking Scheme for MP3-Encoded Signals Using Huffman Data. Circuits Syst Signal Process 39, 3019–3034 (2020). https://doi.org/10.1007/s00034-019-01299-4

D. Megías, J. H. Joancomartí, and J. Minguillón, “Total Disclosure of the Embedding and Detection Algorithms for a Secure Digital Watermarking Scheme for Audio,” ICICS 2005, pp. 427-440, 2005.

M. Fallahpour and D. Megas, “High capacity audio watermarking using FFT amplitude interpolation,” IEICE Electronics Express, vol. 6 (14), pp. 1057–1063, 2009.

C. Cai, Z. Chen, J. Luo, H. Pu, M. Hu and R. Zheng, "Boosting Chirp Signal Based Aerial Acoustic Communication Under Dynamic Channel Conditions," in IEEE Transactions on Mobile Computing, vol. 21, no. 9, pp. 3110-3121, 1 Sept. 2022, doi:10.1109/TMC.2021.3051665

He, J., Liu, Z., Lin, K. et al. A novel audio watermarking algorithm robust against recapturing attacks. Multimed Tools Appl 82, 18599–18616 (2023). https://doi.org/10.1007/s11042-022-14197-w

Abdelwahab, Khaled M., et al. "Efficient SVD-based audio watermarking technique in FRT domain." Multimedia Tools and Applications 79 (2020): 5617-5648.

J.Blackledge, “Digital Watermarking and Self-Authentication using Chirp Coding,” ISAST Transactions on Electronics and Signal Processing, ISSN 1797-2329, vol. 1 (1), pp. 61 – 71, 2007.

Downloads

Published

2024-11-28