METHODS OF MODELLING SCALED CLOUD RESOURCES

Authors

  • Maksym Volk
  • Maksym Popovkin

DOI:

https://doi.org/10.26906/SUNZ.2024.3.097

Keywords:

cloud computing, scalable cloud resources, modeling methods, terraform, azurecloud, infrastructure optimization, efficient use of resources, analysis and evaluation, performance, stability, cost effectiveness, resource integration, infrastructure modeling

Abstract

In the era of rapid development of cloud technologies, the main task is not only the research of existing opportunities, but also the practical implementation of solutions aimed at optimizing the use of cloud resources. The purpose of the article is to identify the most effective approaches to modeling cloud resources, which will allow organizations to achieve a significant reduction in the costs of using cloud resources while simultaneously ensuring a high level of performance and reliability of cloud services. The work offers effective strategies for automating the deployment and management of cloud infrastructure based on the Azure Cloud platform and the Terraform tool. Modern research emphasizes the importance of integrating automated management tools to increase the efficiency of cloud resource use, which includes the analysis of current challenges in scalable cloud resources, such as load balancing, ensuring continuous availability of services and optimization of resource use. An overview of optimization techniques demonstrates strategies for reducing costs and improving performance in cloud environments. The results of the study are intended for a wide range of specialists in the field.

Downloads

References

Wang, D., Zhong, D. and Li, L. "A comprehensive study of the role of cloud computing on the information technology infrastructure library (ITIL) processes", Library Hi Tech, (2022), Vol. 40 No. 6, pp. 1954-1975. DOI: https://doi.org/10.1108/LHT-01-2021-0031

Omar Alzakholi, Lailan M. Haij, Hanan M. Shukur, Rizgar R. Zebari, Shakir M. Abas, Mohammad A. M. Sadeeq Comparison Among Cloud Technologies and Cloud Performance (2020) Vol. 1 No. 1 DOI: https://doi.org/10.38094/jastt1219

Рудь Л. І. Войцеховська О. В. Використання хмарних технологій в методології devops та CI/CD процесі. 2021 DOI: https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/34093/89359.pdf?sequence=2&isAllowed=y

Коломицев М. В. Підхід до побудови системи безпеки хмарних баз даних Johnson та Smith 2020 No УДК 004.7. 2-3 URL: https://ela.kpi.ua/server/api/core/bitstreams/d740a6c4-936d-4d95-a2e5-b41c5686a75e/content

Sururah A. Bello, Lukumon O. Oyedele, Olugbenga O. Akinade, Muhammad Bilal, Juan Manuel Davila Delgado, Lukman A. Akanbi, Anuoluwapo O. Ajayi, Hakeem A. Owolabi Review Cloud computing in construction industry: Use cases, benefits and challenges 2020 Vol. 6 No. 3, pp. 54-60 DOI: https://doi.org/10.1016/j.autcon.2020.103441

Mohammad S., Sukhpal S., Adel N. Performance evaluation metrics for cloud, fog and edge computing: A review, taxonomy, benchmarks and standards for future research, 2020 Vol. 40 No. 6, pp. 54-75. DOI: https://doi.org/10.1016/j.iot.2020.100273

Кулик В.В. Дослідження методів оптимізації обчислень у хмарних технологіях 2020 12 – 15 DOI: https://openarchive.nure.ua/server/api/core/bitstreams/c0243f1e-34a0-42e0-b127-d87f104e6c43/content

Kuchuk, H. and Malokhvii, E. (2024), “Integration of IOT with Cloud, Fog, and Edge Computing: A Review”, Advanced Information Systems, vol. 8(2), pp. 65–78, doi: https://doi.org/10.20998/2522-9052.2024.2.08

Petrovska, I., Kuchuk, H., Kuchuk, N., Mozhaiev, O., Pochebut, M., Onishchenko, Yu. (2023), “Sequential Series-Based Prediction Model in Adaptive Cloud Resource Allocation for Data Processing and Security”, 2023 13th International Conference on Dependable Systems, Services and Technologies, DESSERT 2023, 13–15 October, Athens, Greece, code 197136, doi: https://doi.org/10.1109/DESSERT61349.2023.10416496

Гуржій В. В. ТЕОРЕТИЧНІ АСПЕКТИ ВИКОРИСТАННЯ ШТУЧНОГО ІНТЕЛЕКТУ В УПРАВЛІННІ ПРОЄКТАМИ 2023 No УДК 005:004.8 4 - 5 DOI: https://doi.org/10.32702/2307-2105.2023.12.73

Огляд служб оптимізації виконання й повернення замовлень. 2024. URL: https://learn.microsoft.com/uk-ua

Microsoft Cost Management 2024. URL: https://azure.microsoft.com/en-us/products/cost-management

Published

2024-09-06