HYBRID METHOD OF RECOURSE ALLOCATION IN CLOUD SYSTEMS
DOI:
https://doi.org/10.26906/SUNZ.2024.2.070Keywords:
cloud systems, cloud computing, management, method, resource allocation, planning, virtual machines, virtualization, application, software taskAbstract
The object of research is the process of resource management in cloud systems. The purpose of the article is to increase the efficiency of cloud systems by developing a method for distributing virtual machines in cloud computing systems. The subject of the article is the methods of distribution of virtual machines and tasks in cloud computing systems. The work considers various methods of resource allocation in cloud computing systems. Based on the analysis, conclusions were made about their disadvantages and advantages. As a result of the study, a hybrid method of distributing virtual machines by computer resources and task packages by virtual machines was obtained. The experimental results confirm the improvement of the efficiency of the proposed method in comparison with the existing ones due to the reduction of energy consumption and execution time and the increase of the utilization ratio of processor modules.Downloads
References
Kim W. Cloud computing architecture. International Journal of Web and Grid Services. Vol. 9, No.3. 2013. P. 287-303. DOI: https://doi.org/10.1504/IJWGS.2013.055724
Mary M., Mahalakshmi D. An extensive survey on resource allocation mechanisms in cloud computing. PalArch’s Journal of Archaeology of Egypt/Egyptology. Vol. 17. No 9. 2020. P. 45–56.
Mohan N., Raj E. Resource allocation techniques in cloud computing-research challenges for applications. Computational Intelligence and Communication Networks, Vol. 6. 2021. P. 101–123. DOI: 10.1109/CICN.2012.177
Prodan R., Ostermann R. A survey and taxonomy of infrastructure as a service and web hosting cloud providers. Grid Computing. Vol. 10. 2019. P. 45–57. DOI: 10.1109/GRID.2009.5353074
Filimonchuk T., Volk M., Ruban I., Tkachov V. Development of information technology of tasks distribution for grid-systems using the GRASS simulation environment. Eastern-European Journal of Enterprise Technologies. Information and controlling system, 2016. Vol. 3/9 (81). pp. 45–53. DOI: https://doi.org/10.15587/1729-4061.2016.71892
Kumar K., Feng J., Nimmagadda Y., Lu Y. Resource allocation for real-time tasks using cloud computing. Computer Communications and Networks. Vol. 3. 2011. P. 21–30. DOI: 10.1109/ICCCN.2011.6006077
Гора М., Волк М. Моделі управління ресурсами для забезпечення функціональної стійкості процесу розподілених обчислень. Вісник Херсонського національного технічного університету. 2023. No 4(87). C. 244-251. DOI: https://doi.org/10.35546/kntu2078-4481.2023.4.28
Mamchych O., Volk M. Smartphone Based Computing Cloud and Energy Efficiency.12th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece. 2022. P.1-5, DOI: 10.1109/DESSERT58054.2022.10018740
Chen J., Tsai C., Lu S. Resource reallocation based on SLA requirement in cloud environment. IEEE Transactions on Services Computing, Vol. 25. 2020. P. 89–102. DOI: 10.1109/ICEBE.2015.70
Yang Z., Liu M., Xiu J., Liu С. Study on cloud resource allocation strategy based on particle swarm ant colony optimization algorithm. Cloud Computing and Intelligence Systems. Vol. 2. 2012. P. 67–80. DOI: 10.1109/CCIS.2012.6664453
Zheng X. А Pareto-based fruit fly optimization algorithm for task scheduling and resource allocation in cloud computing environment. IEEE Transactions on Services Computing. Vol. 12. 2016. P. 112–121. DOI: 10.1109/CEC.2016.7744219
Goutam S., Yadav A. Preemptible priority-based dynamic resource allocation in cloud computing with fault tolerance. International Journal of Communication Networks. Vol. 12. No. 3. 2015. P.67–76. DOI: 10.1109/ICCN.2015.54
Tseng F., Wang X., Chou L., Chao H., Leung V. Dynamic resource prediction and allocation for cloud data centre using the multi-objective genetic algorithm. IEEE Systems Journal. Vol. 12. 2018. P.1688–1699. DOI: 10.1109/JSYST.2017.2722476
Wei L. Genetic Algorithm Optimization of Concrete Frame Structure Based on Improved Random Forest. International Conference on Electronics and Devices, Computational Science (ICEDCS). Marseille, France. 2023. P. 249-253, DOI: 10.1109/ICEDCS60513.2023.00051
Коваленко А. А., Кучук Г. А. Методи синтезу інформаційної та технічної структур системи управління об’єктом критичного застосування. Сучасні інформаційні системи. 2018. Т. 2, № 1. С. 22–27. DOI: https://doi.org/10.20998/2522-9052.2018.1.04
Свиридов А. C., Коваленко А. А., Кучук Г. А. Метод перерозподілу пропускної здатності критичної ділянки мережі на основі удосконалення ON/OFF-моделі трафіку. Сучасні інформаційні системи. 2018. Т. 2, № 2. С. 139–144. DOI: https://doi.org/10.20998/2522-9052.2018.2.24
Ivanisenko I.M., Volk M.O. Simulation methods for load balancing in distributed computing. Proceedings of IEEE East-West Design & Test Symposium (EWDTS’2017), Novi Sad, Serbia, September 27 – October 2, 2017. P. 690-695. DOI: 10.1109/EWDTS.2017.8110078 Received (Надійшла) 27.02.2024