INVESTIGATION OF INFRASOUND LEVELS IN EDUCATIONAL PREMISES AND DETERMINATION OF CONDITIONS FOR THEIR NORMALIZATION

Authors

  • N. Burdeina

DOI:

https://doi.org/10.26906/SUNZ.2024.1.165

Keywords:

infrasound, educational classrooms, computer classes, educational laboratories

Abstract

The study is dedicated to solving the scientific and practical problem of normalizing infrasound levels in general classrooms, computer classrooms, specialized laboratories of higher education institutions and providing recommendations on means and measures for their normalization. An analysis of existing research, publications, and applied developments regarding measures and means of normalizing infrasound levels in educational and industrial settings was carried out. On-site measurements of infrasound levels in the premises of higher education institutions were performed. The infrasound measurement was carried out with a calibrated OKTAVA-110A device - a class 1 sound level meter with built-in octave and third-octave filters. It was found that in certain premises of higher education institutions, the infrasound values are close to the maximum permissible in accordance with European requirements - 90 dB. Significant differences in the readings of the device on the "Lin" and "A" scales indicate the significant presence of infrasound in the general acoustic pollution. At the same time, unexpected, repeated presence of infrasound levels of 95-105 dB was found in some locations of educational buildings and adjacent territories. These facts require establishing the sources of increased infrasound load on the acoustic environment and their further research. A promising direction for improving the safety of students, teachers and employees is a comprehensive survey of the premises and the surrounding territory of the university, followed by the drawing up of a map of the acoustic pollution of the environment for the development of a system of safety measures based on the principles of reasonable sufficiency.

Downloads

References

Pawlas K., Wpływ infradźwięków i hałasu o niskich częstotliwościach na człowieka – Przegląd piśmiennictwa. Podstawy i Metody Oceny Środowiska Pracy. 2009. № 2(60), s. 27–64. URL:https://www.researchgate.net/publication/250916608_Wplyw_infradzwiekow_i_halasu_o_niskich_czestotliwosciach_na_czl owieka_-_przeglad_pismiennictwa (дата звернення: 19.05.2023).

Augustyńska D. Wartości graniczne ekspozycji na infradźwięki – przegląd piśmiennictwa. PiMOŚP. № 2(60), 2009. – s. 15. URL: https://www.semanticscholar.org/paper/Warto%C5%9Bci-graniczne-ekspozycji-na-infrad%C5%BAwi%C4%99ki-%E2%80%93-Augusty%C5%84ska/ 7536b19280002332fa1b44b8b94bd4adc6c509d2 (дата звернення: 19.05.2023).

Approved Code of Practice for the Management of Noise in the Workplace. Standards New Zealand. Published by the Occupational Safety and Health Service. Department of Labour. Wellington. New Zealand. First Edition: September 1996. Revised: October 2002. 67 р. URL: https://docplayer.net/16928591-Approved-code-of-practice-for-the-management-of-noisein-the-workplace.html.

Wegleitung zu den Verordnungen 3 und 4 zum Arbeitsgesetz. Schweizerische Eidgenossenschaft Confederation (SECO) – Staatssekretariat für Wirtschaft. 2012. URL:https://www.seco.admin.ch/seco/de/home/Publikationen_Dienstleistungen/Publikationen_und_Formulare/Arbeit/Arbeitsbedi ngungen/Wegleitungen_zum_Arbeitsgesetz/wegleitung-zu-den-verordnungen-3-und-4-zum-arbeitsgesetz.html.

Storm R. Health risk due to exposure of low frequency noise. Orebro University. Örebro, Sweden. 2009. URL:http://www.diva-portal.org/smash/ get/diva2:273045/FULLTEXT01.pdf (дата звернення: 20.05.2023).

Health Effects of Exposure to Ultrasound and Infrasound. RCE-14, Documents of Health Protection Agency. DEFRA. 2010. URL: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/335014/RCE14_for_web_with_security.pdf (дата звернення: 20.05.2023).

Araújo Alves J., Neto Paiva F., Torres Silva L., Remoaldo P. Low-Frequency Noise and Its Main Effects on Human Health—A Review of the Literature between 2016 and 2019. Appl. Sci. 2020, 10, 5205. https://doi.org/10.3390/app10155205.

Myshchenko I., Nazarenko V., Stopa M., Maslakiewicz M. Occupational Exposure to Infrasonic and Low Frequency Noise: Actual Problems of Hygienic Standardization. Український журнал Охорона праці. 2021. 17 (4). РР. 235-244. https://doi.org/ 10.33573/ujoh2021.04.235.

Van Kamp I., van den Berg F. Health effects related to wind turbine sound, including low-frequency sound and infrasound. Acoustics Australia/ Australian Acoustical Society. 46(82). 2018. РР. 31-57. https://doi.org/10.1007/ s40857-017-0115-6.

Baeza Moyano D., Gonzalez Lezcano R. Effects of infrasound on health: Looking for improvements in housing conditions. International Journal of Occupational Safety and Ergonomics. 2022. 28(2). РР. 809-823. https://doi.org/10.1080/10803548.2020.1831787.

Swen M., Stefan H., Martin H., Susanne K. Can infrasound from wind turbines affect myocardial contractility? A critical review. Noise and Health. 2022. 24(113), РР. 96-106. URL: https://eref.uni-bayreuth.de/id/eprint/73087/ (дата звернення: 23.05.2023).

Ascone L., Kling C., Wieczorek J., Koch C., Kühn S. A longitudinal, randomized experimental pilot study to investigate the effects of airborne infrasound on human mental health, cognition, and brain structure. Scientific reports. 2021. 11(1). РР. 1-9. https://doi.org/10.1038/s41598-021-82203-6.

Chaitidis G.D., Marhavilas P.K., Kanakaris V. Potential Effects on Human Safety and Health from Infrasound and Audible Frequencies Generated by Vibrations of Diesel Engines Using Biofuel Blends at the Workplaces of Sustainable Engineering Systems. Sustainability. 2022, 14. Р. 7554. https://doi.org/10.3390/su14137554.

McKenna M.H., McComas S.L., Danielle Whitlow R., Diaz-Alvarez H., Jordan A. M., Daniel Costley R., Simpson C. P. Remote structural infrasound: Case studies of real-time infrastructure system monitoring. Journal of Infrastructure Systems. 2021. 27(3), 04021021. https://doi.org/10.1061/ (ASCE)IS.1943-555X.0000623

Keith S.E., Daigle G.A., Stinson M. R. Wind turbine low frequency and infrasound propagation and sound pressure level calculations at dwellings. The Journal of the Acoustical Society of America. 2018. 144(2). Р. 981-996. https://doi.org/10.1121/1.5051331.

Müller L., Kropp W., Zachos G., Forssén J. Investigating Low Frequency Sound from Traffic in a Living Room Lab. Fortschritte der Akustik, 2021. 4 р.

Sihar I. Numerical modelling of transient low-frequency sound propagation and vibration in buildings. Eindhoven: Eindhoven University of Technology. 2022. 213 p.

Veldboom E., van der Werf C., Incedalci Z., van den Berg F. The effect of masking noise on persons suffering from a low frequency sound. Applied Acoustics. 2022. Volume 191. https://doi.org/10.1016/j.apacoust.2022.108681.

Glyva V., Kasatkina N., Levchenko L., Tykhenko O., Nazarenko V., Burdeina N., Panova O., Bahrii M., Nikolaiev K., Biruk Y. Determining the dynamics of electromagnetic fields, air ionization, low-frequency sound and their normalization in premises for computer equipment. Eastern-European Journal of Enterprise Technologies, 2022, 3(10-117), рр. 47–55. https://doi.org/10.15587/1729-4061.2022.258939.

Бурдейна Н.Б. Актуальні напрями удосконалення державних будівельних норм проектування нових і реконструкції існуючих закладів освіти. Містобудування та територіальне планування. Київ. 2023. Вип. 82. С. 43-52. https://doi.org/10.32347/2076-815x.2023.82.43-52.

Environmental noise guidelines for the European region. 2018:160. World Health Organization. URL:https://www.euro.who.int/en/publications/ abstracts/environmental-noise-guidelines-for-the-europeanregion-2018 (дата звернення: 18.05.2023).

ISO 7196:1995 «Acoustics. Frequency-weighting characteristic for infrasound measurements». Publication date: 1995-03. Number of pages: 6. URL: https://www.iso.org/standard/13813.html (дата звернення: 18.05.2023).

ДСН 3.3.6.037-99 Санітарні норми виробничого шуму, ультразвуку та інфразвуку. Постанова Міністерство охорони здоров’я від 01.12.1999 № 37. URL: https://zakon.rada.gov.ua/rada/show/va037282-99#Text (дата звернення: 18.05.2023).

СанПіН 42-128-4948-89 «Санітарні норми допустимих рівнів інфразвуку і низькочастотного шуму на території житлової забудови». Розробник: Головний державний санітарний лікар СРСР. [Скасовано згідно з розпорядженням Кабміну від 20.01.2016 № 94-р.] URL: http://online.budstandart.com/ua/catalog/doc-page?id_doc=66167 (дата звернення: 18.05.2023).

МУ 2410-81 «Производственный шум и профілактика его неблагоприятного воздействия на организм подростков», М., 1981 г. 36 с.

ACGIH Threshold Limit Values (TLVs®) and Biological Exposure Indices (BEIs®). 2010. 116 p. URL:https://www.acgih.org/science/tlv-bei-guidelines/ (дата звернення: 19.05.2023).

V. Glyva, O. Zaporozhets, L. Levchenko, N. Burdeina, V. Nazarenko. Methodological Foundations Protective Structures Development For Shielding Electromagnetic And Acoustic Fields. Strength of Materials and Theory of Structures. 2023. Issue No. 110. PP. 245-255. https://doi.org/10.32347/2410-2547.2023.110.245-255

Published

2024-02-09