MODEL AND METHODS OF DETECTION OF A LARGE-SCALE ATTACK IN THE IOT ENVIRONMENT
DOI:
https://doi.org/10.26906/SUNZ.2024.1.127Keywords:
dataset, neural network, machine learning, network traffic, IDS, training, prediction, anomaly detection, attack, Internet of Things, IoT, intrusion detection systemAbstract
The main concept and subject of the study is the detection of various types of extensive attacks in the IoT infrastructure, an overview of the presented model, methods and existing advanced intrusion detection systems. The purpose of this work is to propose a real-time intrusion detection system that will be trained on a large data set using a neural network using an ensemble machine learning method. The subject of the research is an overview of existing methods and models for detecting a large-scale attack and proposing an intrusion detection system solution, which will be based on the method of detecting anomalies and a neural network. Conclusion. An intrusion detection system was built, which analyzes Internet traffic, extracts signs from the packet, processes them and predicts various types of attacks, as well as characterizes them by type. Security threat can be considered as the main critical issue for IoT devices, so the use of such systems reduces the risks of data loss.Downloads
References
T. Mazhar, D. B. Talpur, T. Al Shloul, Y. Y. Ghadi, I. Haq, I. Ullah, K. Ouahada, H. Hamam Analysis of IoT Security Challenges and Its Solutions Using Artificial Intelligence. 2023. DOI: https://doi.org/10.3390%2Fbrainsci13040683
A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman Survey of intrusion detection systems: techniques, datasets and challenges. 2019. URL: https://cybersecurity.springeropen.com/articles/10.1186/s42400-019-0038-7
Рубан І. В. Класифікація методів виявлення аномалій в інформаційних системах / І. В. Рубан, В. О. Мартовицький, С. О. Партика // Системи озброєння і військова техніка. — 2016. — № 3. — С. 100-105
Verma Abhisher, Virender Ranga Machine learning based intrusion detection systems for IoT applications. 2020. URL:https://link.springer.com/article/10.1023/A:1010933404324
Коваленко А. А., Кучук Г. А. Методи синтезу інформаційної та технічної структур системи управління об’єктом критичного застосування. Сучасні інформаційні системи. 2018. Т. 2, № 1. С. 22–27. DOI: https://doi.org/10.20998/2522-9052.2018.1.04
Ruban, I.V., Martovytskyi, V.O., Kovalenko, A.A. and Lukova-Chuiko, N.V. (2019), “Identification in Informative Systems on the Basis of Users' Behaviour”, Proceedings of the International Conference on Advanced Optoelectronics and Lasers, CAOL 2019-September,9019446, pp. 574-577, DOI: https://doi.org/10.1109/CAOL46282.2019.9019446
Kovalenko, A., Kuchuk, H., Kuchuk, N. and Kostolny, J. (2021), “Horizontal scaling method for a hyperconverged network”, 2021 International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia, doi:https://doi.org/10.1109/IDT52577.2021.9497534
J. Delua Supervised vs. Unsupervised learning. 2021. URL: https://www.ibm.com/blog/supervised-vs-unsupervised-learning/
1. I. U. Khan, M. Ouaissa, M. Ouaissa, Z. A. El Houda, M. Fazal Cyber Security for Next-Generation Computing. 2024. DOI:https://doi.org/10.1201/9781003404361
. Журило, О., Ляшенко, О. і Аветісова, К. 2023. ОГЛЯД РІШЕНЬ З АПАРАТНОЇ БЕЗПЕКИ КІНЦЕВИХ ПРИСТРОЇВ ТУМАННИХ ОБЧИСЛЕНЬ У ІНТЕРНЕТІ РЕЧЕЙ. СУЧАСНИЙ СТАН НАУКОВИХ ДОСЛІДЖЕНЬ ТА ТЕХНОЛОГІЙ В ПРОМИСЛОВОСТІ. 1 (23) (Квіт 2023), 57–71. DOI: https://doi.org/10.30837/ITSSI.2023.23.057.
V. Martovytskyi, I. Ruban, H. Lahutin, I. Ilina, V. Rykun and V. Diachenko, "Method of Detecting FDI Attacks on Smart Grid," 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 2020, pp. 132-136, doi: 10.1109/PICST51311.2020.9468005