PERSONALIZATION OF VISUAL CONTENT OF INTERACTIVE ART IN AUGMENTED REALITY BASED ON INDIVIDUAL USER PREFERENCES
DOI:
https://doi.org/10.26906/SUNZ.2024.1.115Keywords:
interactive art, augmented reality, neural collaborative filtering, generalized matrix factorizationAbstract
Topicality. In connection with the development of AR technologies and their use in interactive art, there is a growing need to develop methods of personalizing visual content, focused on the individual preferences of users. Research methods. Neural collaborative filtering method, generalized matrix factorization method, mood analysis on video. The purpose of the article: Researching the possibilities of improving the personalization of visual content in interactive art by evaluating the emotional reactions of users and their implicit feedback. The results obtained. The application of neural collaborative filtering and generalized matrix factorization to create adapted visual content in interactive art in AR was considered, which will significantly increase the relevance and immersion of users in interactive works. Conclusion. The considered approach can be used to improve immersiveness and personalization during user interaction with interactive art in AR.Downloads
References
Gironacci, Irene. (2021). State of the Art of Extended Reality Tools and Applications in Business. 10.4018/978-1-7998-4339-9.ch008.
Chen, Rongfei & Zhou, Wenju & li, yang & Zhou, Huiyu. (2022). Video-Based Cross-Modal Auxiliary Network for Multimodal Sentiment Analysis. IEEE Transactions on Circuits and Systems for Video Technology. PP. 1-1.10.1109/TCSVT.2022.3197420
Wang, Fei. (2023). Research on the application of immersive art in digital technology scene. Advances in Education, Humanities and Social Science Research. 5. 88. 10.56028/aehssr.5.1.88.2023.
Zhang, Ying. (2023). Immersive Multimedia Art Design Based on Deep Learning Intelligent VR Technology. Wireless Communications and Mobile Computing. 2023. 1-8. 10.1155/2023/9266522.
Li, Huihong. (2023). Personalized Art Work Recommendation System and Methods Based on User Interest Characteristics and Emotional Preferences. Scalable Computing: Practice and Experience. 24. 883-894. 10.12694/scpe.v24i4.2393.
Patel, Dhruval & Patel, Foram & Chauhan, Uttam. (2023). Recommendation Systems: Types, Applications, and Challenges. 2210-142. 10.12785/ijcds/130168.
Duraisamy, Premkumar & Natarajan, Yuvaraj & .S, Yuvaraj & V.Niranjani,. (2023). An Overview of Different Types of Recommendations Systems - A Survey. 10.1109/ICITIIT57246.2023.10068631.
Fernández del Amo Blanco, Iñigo & Erkoyuncu, John & Farsi, Maryam & Ariansyah, Dedy. (2021). Hybrid recommendations and dynamic authoring for AR knowledge capture and re-use in diagnosis applications. Knowledge-Based Systems. 239.107954. 10.1016/j.knosys.2021.107954.
He, Xiangnan & Liao, Lizi & Zhang, Hanwang. (2017). Neural Collaborative Filtering. Proceedings of the 26th International Conference on World Wide Web.
Kuliahin, Andrii & Narozhnyi, V. & Tkachov, V. & Kuchuk, H.. (2022). ДОСЛІДЖЕННЯ МЕТОДІВ ПОБУДОВИ РЕКОМЕНДАЦІЙНИХ СИСТЕМ ДЛЯ РОЗВ’ЯЗАННЯ ЗАДАЧІ ВИБОРУ НАЙБІЛЬШ РЕЛЕВАНТНОГО ВІДЕО ПРИ СТВОРЕННІ ВІРТУАЛЬНИХ АРТ-КОМПОЗИЦІЙ. Системи управління, навігації та зв’язку. Збірник наукових праць. 4. 94-99. 10.26906/SUNZ.2022.4.094.
Li, Jiangfeng & Li, Ziyu & Ma, Xiaofeng & Zhao, Qinpei & Zhang, Chenxi & Yu, Gang. (2023). Sentiment Analysis on Online Videos by Time-Sync Comments. Entropy. 25. 1016. 10.3390/e25071016.
Chalkias, Ilias & Tzafilkou, Katerina & Karapiperis, Dimitrios & Tjortjis, Christos. (2023). Learning Analytics on YouTube Educational Videos: Exploring Sentiment Analysis Methods and Topic Clustering. Electronics. 12. 3949.10.3390/electronics12183949.
Li, Jiangfeng & Li, Ziyu & Ma, Xiaofeng & Zhao, Qinpei & Zhang, Chenxi & Yu, Gang. (2023). Sentiment Analysis on Online Videos by Time-Sync Comments. Entropy. 25. 1016. 10.3390/e25071016.
Deshmukh, Rushali & Amati, Vaishnavi & Bhamare, Anagha & Jadhav, Aditya. (2023). Visual Sentiment Analysis: An Analysis of Emotions in Video and Audio. 10.1007/978-981-99-6586-1_21.
Tran, Du & Wang, Heng & Torresani, Lorenzo & Ray, Jamie & LeCun, Yann & Paluri, Manohar. (2017). A Closer Look at Spatiotemporal Convolutions for Action Recognition