HEART RATE VARIABILITY ANALYSIS USING ARTIFICIAL NEURAL NETWORKS
DOI:
https://doi.org/10.26906/SUNZ.2024.1.109Keywords:
neuron, machine learning, heart rate variability, diagnosis of heart disease, RR intervalAbstract
The article provides a brief review and analysis of existing algorithms and software implementations of diagnostic systems for assessing heart rate variability, based on machine learning methods. The advantages of using an artificial neural network to classify types of electrocardiographic signals are presented, which improves the efficiency and quality of functional diagnostics of cardiac activity. To identify the most effective option for constructing neural network blocks for the hardware-software complex for analyzing heart rate variability, several options for implementing the construction of a neural network have been proposed. An analysis of methods and algorithms for morphological analysis of an electrocardiogram is carried out and the main stages of designing an artificial neural network as a classifier for pattern recognition such as RR intervals are given.Downloads
References
Clifford G.D., Liu Ch., Moody B., Lehman L.H., Silva I., Li Q. Classification from a Short Single Lead ECG Recording: The PhysioNet – Computing in Cardiology Challenge 2017, “Computing in Cardiology”, pp.1-4, DOI: 10.22489/CinC.2017.065-469.
Чернетченко Д.В., Мілих М.М., Луданов К.В. Апаратна реалізація імпульсної імпульсної штучної нейронної мережі для детектування параметрів електрокардіографічного сигналу (ЕКГ). Дніпропетровський національний університет ім. Олеся Гончара, Том 4, 2019 (275). DOI: 10.31891/2307-5732-2019-275-4-126-133
Tekeste T., Saleh H., Mohammad B., Khandoker A., Elnaggar M. A nano-watt ecg feature extraction engine in 65nm technology, IEEE Trans. on Circuits and Systems II: Express Briefs PP (99) (2017) 1–1. DOI: 10.1109/TCSII. 2017.2658670.
Jain S., Ahirwal M., Kumar A., Bajaj V., Singh G. QRS detection using adaptive filters: A comparative study, ISA Transactions 66 (2017) 362–375. DOI: 10.1016/j.isatra.2016.09.023.
Лісун Ю.Б., Углев Є.І. Варіабельність серцевого ритму, використання та методи аналізу. ДНУ «Центр інноваційних медичних технологій НАН України». № 4. 2020. DOI: 10.25284/2519-2078.4(93).2020.220693.
Karimipour M., Homaeinezhad R. Real-time electrocardiogram p-qrs-t detection delineation algorithm based on qualitysupported analysis of characteristic templates, Computers in Biology and Medicine 52 (2014) 153–165. DOI: 10.1016/j.compbiomed.2014.07.002.
Kovalchuk M., Kharchenko V., Yavorskyi A. ECG signal classification using machine learning techniques. Bulletin of Taras Shevchenko National University of Kyiv. Series Physics & Mathematics 2022, 2 DOI: 10.17721/1812-5409.2022/2.9
Wu L., Xie X., Wang Y. (2021): ECG Enhancement and R-Peak Detection Based on Window Variability, “Healthcare” 2021, (Basel), 9 (2), P. 227; DOI: 10.3390/healthcare9020227.
Wieclaw L., Khoma Y., Fałat P., Sabodashko D., Herasymenko V. Biometrie identification from raw ECG signal using deep learning techniques. In 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). Vol. 1. Р. 129–133). DOI: 10.1109/IDAACS.2017.8095063
Goldberger A. L., Amaral A. N., Glass L. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research for complex physiologic signals. Circulation. 2000 Vol. 101. P. 215-220.
PhysioNet Content Overview URL: https://physionet.org/about/content/
Bailey J.A. et.al. Behavioral simulation and synthesis of biological neuron systems using synthesizable VHDL, Neurocomputing, Elsevier B.V., pp. 2392-2406, 2011. DOI: 10.1109/BMAS.2008.4751231.
Дудикевич В.Б., Хома В.В., Чекурін В.Ф., Хома Ю.В. Нормалізація сигналів ЕКГ для застосування в системах біометричної ідентифікації Інформатика, обчислювальна техніка та автоматизація. Том 30 (69) Ч. 1 № 4 2019. DOI: 10.32838/2663-5941/2019.4-1/10.