ACOUSTIC AND ELECTROMAGNETIC INFLUENCE OF CORONA DISCHARGES ON THE CONDITION OF THE PRODUCTION ENVIRONMENT

Authors

  • B. Bolibrukh
  • O. Kozlitin
  • B. Osadchiy

DOI:

https://doi.org/10.26906/SUNZ.2023.4.143

Keywords:

corona discharge, radio interference, acoustic noise, electromagnetic compatibility

Abstract

Based on the analysis of studies on the intensity of corona discharges, it is shown that electromagnetic radiation and acoustic noise generated by corona discharges can have a direct and indirect negative impact on workers. In particular, the indirect influence consists in the influence of the instability of the functioning of technical means on the emotional and psychological state of people. Frequency spectra of electromagnetic radiation of corona discharges were determined. The most acceptable method of determining the intensity of corona discharges depending on the intensity of the electric field near the earth's surface is shown. The most acceptable ratios between the levels of the useful radio signal and the levels of radio interference are shown. The ratio of the attenuation of radio interference levels with the distance from the radiation source is given. The frequency dependence of the intensity of radio interference is given, which can be used when performing project works. Quantitative emission values of the most common wireless systems and technical devices, as well as their resistance to radio interference (laptops, servers, mobile phones, etc.) are presented. It is shown that radio interference can cause not only an adverse effect on people, but also cause unstable operation of equipment of critical infrastructure facilities due to unpredictable bursts of high-frequency radiation up to 1.5–3.5 mW/cm2 . It was determined that the most significant acoustic impact of power transmission lines is a sound frequency of 100 Hz and its multiples. In addition, corona discharges generate broadband noise. Calculations of noise levels are provided.It is shown that the empirical ratios of noise level calculations are somewhat ambiguous, therefore, in practical activities, especially in the process of project works, it is advisable to compare the results with field measurements at existing facilities. An increase in noise intensity with an increase in the number of wires in a phase together with a decrease in the intensity of electric fields near the surface of the wires opens up the possibility of optimizing design solutions from the point of view of minimizing the adverse impact of power transmission lines on people and the environment as a whole.

Downloads

Download data is not yet available.

References

ETSI EN 300 220-2 V2.4.1 (2012-01). Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment to be used in the 25 MHz to 1 000 MHz frequency range with power levels ranging up to 500 mW; Part 2: Harmonized EN covering essential requirements under article 3.2 of the R&TTE. Directive. European Telecommunications Standards Institute. 2012. 20 р. URL: https://www.etsi.org/deliver/etsi_en/300200_300299/30022002/02.04.01_40/ en_30022002v020401o.pdf (дата звернення: 17.05.2023).

ETSI EN 301 489-1 V2.2.1 (2019-03). ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard for ElectroMagnetic Compatibility. Directive. European Telecommunications Standards Institute, 2019. 36 р. URL: http://uas.org.ua/wpcontent/uploads/2019/04/en_30148901v020201a.pdf (дата звернення: 17.05.2023).

СОУ НЕК 29.240.1-13:2019 (EN 50341-1:2012, IDT) Повітряні лінії електропередавання напругою понад 1 кВ змінного струму. Частина 1. Загальні технічні характеристики. (Наказ від 07.05.2019 № 262).

Карпалюк І.Т., Гриб О.Г., Швець С.В. Рудевіч Н.В., Захаренко Н.С. коронного розряду на струмопровідних частинах електричної системи за акустичними коливаннями. Науково-технічний збірник гірнича електро-механіка та автоматика Національного ТУ «Дніпровська політехніка»: Дніпро: Національний ТУ «Дніпровська політехніка», 2019. №102. С. 3–7

M. Rezinkina, O. Rezinkin, I. Karpaliuk and V. Grabko, "Control and Monitoring of Power Transmission Lines Condition over Wide Area with the Help of UAVs," 2020 IEEE 7th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine, 2020, pp. 172-175, doi: 10.1109/ESS50319.2020.9160150.

Карпалюк І. Т. Методи та засоби оцінки впливу коронного розряду на якість електропостачання: дис. д-ра техн. наук спец. 05.09.03: Харків, 2020. – 333 с.

Паньків Х.В. Нормалізація фізичних факторів виробничого середовища енергетичних об’єктів: автореф. дис. ... канд. техн. наук: 05.26.01 Київ, 2016. 22 с.

Глива В.А., Ходаковський О.В., Тихенко О.М., Панова О.В. Засоби керування електромагнітною обстановкою в умовах її часових та просторових змін. Управління розвитком складних систем. 2019. Вип. 39. С. 199−205.

Sihar I. Numerical modelling of transient low-frequency sound propagation and vibration in buildings. Eindhoven: Eindhoven University of Technology. 2022. 213 p.

Bolibrukh, B., Glyva, V., Kasatkina, N., Levchenko, L., Tykhenko, O., Panova, O., Bogatov, O., Petrunok, T., Aznaurian, I., & Zozulya, S. (2022). Monitoring and management ion concentrations in the air of industrial and public premises. EasternEuropean Journal of Enterprise Technologies, 1(10(115), 24–30. https://doi.org/10.15587/1729-4061.2022.253110.

Електростатичний повітряний фільтр-іонізатор: пат. 87189 Україна, МПК: B03C 3/08. № 2013100086; заявл. 14.08.2013; опубл. 27.01.2014, Бюл. № 2. 4 с.

Published

2023-12-12