METHOD OF CREATING A SOUND ENVIRONMENT IN SIMULATION-TRAINING COMPLEXES OF SPECIAL VEHICLES
DOI:
https://doi.org/10.26906/SUNZ.2023.2.045Keywords:
simulation, simulation-training complex, sound environment, sound processingAbstract
A method of creating a sound environment in simulation-training complexes, taking into account the distance to the observer and the contribution of a separate sound fragment is cobsidered. The purpose of the article is the analysis and optimization the process of selecting sound fragments that are played in the process of modeling the sound environment. An analysis of existing software solutions and mathematical models used in training complexes and virtual reality systems was carried out. An algorithm using a reservation scheme and a functional dependency for evaluating the decision to play a fragment depending on its distance to the observer is given. The issue of practical implementation of the method is considered. According to the results of the study, was determined that the proposed evaluation function provides a reduction in the number of the simultaneous played fragments while at one time increasing the total contribution of the fragments heard by the observer.Downloads
References
Українські тренажери: теорія і практика // Defence Express. 2010. №1/2. C. 32–52.
K.Yao and S.Huang. Simulation Technology and Analysis of Military Simulation Training// Kai Yao and Shaoluo Huang, J. Phys.: Conf. Ser. 2021.doi: 10.1088/1742-6596/1746/1/012020
Page, E. H. and Smith R. (1998). “Introduction to military training simulation: a guide for Discrete Event Simulationists”, Winter Simulation Conference (WSC´98), USA.
Бусяк Ю.М., Васильченков О.Г. Побудова структур даних обміну інформацією між підсистемами тренажерів транспортних засобів // Вісн. Нац.техн. ун-ту «ХПІ». Харків, 2002. № 9, т.7: Автоматика та приладобудування. С. 27–30.
Larsen M., Gruendell F. A Visual Systems Display for Full-Mission Flight Simulator Training // Presented at the IMAGE VII Conference. Tucson, Arisona, 1994.
Pharr M., Green S. Ambient occlusion // GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics. Addison-Wesley Professional, 2004. P. 279–292.
Mittring M. Finding Next Gen: Cryengine 2 // SIGGRAPH ’07: ACM SIGGRAPH 2007 courses: Special Interest Group on Computer Graphics and Interactive Techniques Conference, San Diego, August 5–9, 2007: Proc.. New York, 2007. P. 97–121.
Sennersten C. and Lindley C. (2009). "An Investigation of Visual Attention in FPS Computer Gameplay", VS-GAMES’09: Games and Virtual Worlds for Serious Applications, March 23-24, Coventry, UK.
Spruill M. (2010). Technical Evaluation Report, NATO Modelling & Simulation Group MSG-078 Workshop on Exploiting Commercial Games and Technology for Military Use 8th Workshop, Sept. 2009, NATO Report RTO-MP-MSG-078.
D. Miljkovic, “Sample based synthesis of car engine noise,” in 2020 43rd International Conventionon Information, Communication and Electronic Technology (MIPRO), pp. 1012–1017, Sep. 2020. doi: 10.23919/mipro48935.2020.9245323
F.Chen, X. Zhang. Synthesising the sound of a car engine based on envelope decomposition and overlap smoothing. Journal of Vibroengineering. August 2021, Vol. 23, Issue 5. pp.1254-1266. doi:10.21595/jve.2021.21920
J.Jagla, J.Maillard, N.Martin. Sample-based engine noise synthesis using an enhanced pitch-synchronous overlap-And-Add method// November 2012. The Journal of the Acoustical Society of America 132(5):3098-108. doi:10.1121/1.4754663
David A. Heitbrink, Steve Cable. Design of a Driving Simulation Sound Engine// DSC 2007. September 2007.
C.Verron, G.Drettakis. Procedural audio modeling for particle-based environmental effects. 133rd AES Convention, Oct 2012, San Francisco, United States. 2012.
Y. Dobashi, T. Yamamoto, and T. Nishita, “Real-time rendering of aerodynamic sound using sound textures based on computational fluid dynamics,” ACM Transactions on Graphics (Proc. SIGGRAPH 2003), vol. 22, no. 3, pp. 732–740, 2003. doi:10.1145/882262.882339
F. Antonacci, M. Foco, A. Sarti, and S. Tubaro. Real time modeling of acoustic propagation in complex environments. Proceedings of 7th International Conference on Digital Audio Effects, pages 274–279, 2004.
A.Chandak, C.Lauterbach, M.Taylor, Z.Ren, D.Manocha. Ad-frustum: Adaptive frustum tracing for interactive sound propagation. IEEE Transactions on Visualization and Computer Graphics, 14(6):1707–1722, 2008. doi: 10.1109/TVCG.2008.111
N.Raghuvanshi, J.Snyder, R.Mehra, M.C. Lin, N.K. Govindaraju. Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Transactions on Graphics (proceedings of SIGGRAPH 2010), 29(3), July 2010. doi: 10.1145/1833349.1778805
Tobias Lentz, Dirk Schroder, Michael Vorlander, and Ingo Assenmacher. Virtual reality system with integrated sound field simulation and reproduction. EURASIP J. Appl. Signal Process., 2007(1):187, 2007. doi: 10.1155/2007/70540