INVESTIGATION OF RESISTANCE TO DIFFERENTIAL CRYPTANALYSIS OF THE PROPOSED HASHING FUNCTION OF A PERFECT CRYPTOGRAPHIC PROTECTION MODULE IN INFORMATION AND COMMUNICATION SYSTEMS
DOI:
https://doi.org/10.26906/SUNZ.2022.3.093Keywords:
cryptanalysis, hashing, information and communication systems, information securityAbstract
The object of the study is to ensure the confidentiality of data in information and communication systems for managing technological processes based on cloud technologies. The subject is the study of resistance to differential cryptanalysis of the proposed hashing function of an improved cryptographic protection module in information and communication systems. The purpose of the work is to study the resistance to differential cryptanalysis of the proposed hashing function of an improved cryptographic protection module in information and communication process control systems based on cloud technologies. As a result of the research, the module of cryptographic protection of information has been improved, the study of resistance to differential cryptanalysis of the proposed function of hashing of the improved module of cryptographic protection in information and communication systems has been carried out. The conducted experimental study confirmed the cryptographic stability of the improved algorithm against differential cryptanalysis. Conclusions. The cryptographic information protection module has been improved, which, by recording information about the user ID, session ID, sending time, message length and sequence number, as well as using a new procedure for generating a session key for encryption, makes it possible to ensure the confidentiality and integrity of data in information and communication systems process control. For the effective use of this module, it is important to choose cryptographically strong methods of encryption and hashing, as well as synchronization of the secret key. As functions, cryptalgorithms resistant to linear, differential, algebraic, quantum and other known types of cryptanalysis can be used. A study was made of the resistance to differential cryptanalysis of the proposed hashing function of an improved cryptographic protection module in information and communication systems. The conducted experimental study confirmed the cryptographic stability of the improved algorithm against differential cryptanalysis.Downloads
References
https://www.kmu.gov.ua/news/shchodo-kiberataki-na-sajti-vijskovih-struktur-ta-derzhavnih-bankiv
R. Oppliger, Cryptography 101: From Theory to Practice, Artech, 2021.
Job J, Naresh V and K. Chandrasekaran, “A modified secure version of the Telegram protocol (MTProto)”, 2015 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2015, pp. 1-6,
Dion van Dam, Analysing the Signal Protocol. A manual and automated analysis of the Signal Protocol, 21 August 2019, 61 p.
TLS and SRTP for Skype Connect Technical Datasheet, 2011, 8 p.
Q. Wu, “A Chaos-Based Hash Function”, 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, 2015, pp. 1-4,
Gnatyuk S., Kinzeryavyy V., Kyrychenko K., Yubuzova Kh., Aleksander M., Odarchenko R. Secure Hash Function Constructing for Future Communication Systems and Networks, Advances in Intelligent Systems and Computing, Vol. 902, pp. 561-569, 2020.
K. Rajeshwaran and K. Anil Kumar, “Cellular Automata Based Hashing Algorithm (CABHA) for Strong Cryptographic Hash Function”, 2019 IEEE Int. Conference on Electrical, Computer and Communication Technologies (ICECCT), 2019, pp. 1-6,
Iavich M., Iashvili G., Gnatyuk S., Tolbatov A., Mirtskhulava L. Efficient and Secure Digital Signature Scheme for Post Quantum Epoch, Communications in Computer and Information Science, Vol. 1486, pp. 185-193, 2021.
Gnatyuk S., Iavich M., Kinzeryavyy V., Okhrimenko T., Burmak Y., Goncharenko I. Improved secure stream cipher for cloud computing, CEUR Workshop Proceedings, Vol. 2732, pp. 183-197, 2020.
Gnatyuk S., Akhmetov B., Kozlovskyi V., Kinzeryavyy V., Aleksander M., Prysiazhnyi D. New Secure Block Cipher for Critical Applications: Design, Implementation, Speed and Security Analysis, Advances in Intelligent Systems and Computing, Vol. 1126, pp. 93-104, 2020.
A. Kuznetsov, I. Horkovenko, O. Maliy, N. Goncharov, T. Kuznetsova and N. Kovalenko, “Non-Binary Cryptographic Functions for Symmetric Ciphers”, 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), 2020, pp. 567-572, doi: 10.1109/PICST51311.2020.9467982.
E. Jintcharadze and M. Iavich, “Hybrid Implementation of Twofish, AES, ElGamal and RSA Cryptosystems”, 2020 IEEE East-West Design & Test Symposium (EWDTS), 2020, pp. 1-5, doi: 10.1109/EWDTS50664.2020.9224901.
T. R. Lee, J. S. Teh, N. Jamil, J. L. S. Yan and J. Chen, “Lightweight Block Cipher Security Evaluation Based on Machine Learning Classifiers and Active S-Boxes”, in IEEE Access, vol. 9, pp. 134052-134064, 2021, doi: 10.1109/ACCESS.2021.3116468.
Смірнова Т.В., Гнатюк С.О., Бердибаєв Р.Ш., Бурмак Ю.А., Оспанова Д.М., «Удосконалений модуль криптографічного захисту інформації в сучасних інформаційно-комунікаційних системах та мережах». Кібербезпека: освіта, наука, техніка. № 2(14). С. 176-185. 2021.
Смірнова Т.В., Поліщук Л.І., Смірнов О.А., К.О. Буравченко, А.О.Макевнін, «Дослідження хмарних технологій як сервісів», Кібербезпека: освіта, наука, техніка. № 3(7). С. 43-62. 2020.
Смірнова Т.В., Солових Є.К., Смірнов О.А., Дрєєв О.М., «Побудова хмарних інформаційних технологій оптимізаці технологічного процесу відновлення та зміцнення поверхонь деталей», Центральноукраїнський науковий вісник. Технічні науки. № 1(32). с. 184-194, 2019
Смірнова, Т.В., Смірнов, С.А., Минайленко, Р.М., Доренський, О.П., Сисоєнко С.В. «Хмарна автоматизована система інтелектуальної підтримки прийняття рішень для технологічних процесів». Вісник Черкаського державного технологічного університету. Технічні науки. №4, 2020, С. 84-92.
Смірнова Т.В., Буравченко К.О., Кравченко С.С., Горбов В.О., Смірнов О.А. «Хмарна система підтримки прийняття рішень технологічного процесу відновлення поверхонь конструкцій і деталей машин». Сучасні інформаційні системи. 2021. Т. 5, № 4. С. 79-95.