METHOD FOR DETERMINING THE PREFERENCE OF CONSUMER CHARACTERISTICS OF A PRODUCT BASED ON INFORMATION ABOUT ITS CHOICE BY THE BUYER
DOI:
https://doi.org/10.26906/SUNZ.2022.2.068Keywords:
consumer preferences, utility theory, decomposition approach, comparative identification, utility functionAbstract
Topicality. One of the most urgent tasks of modern marketing is to identify and analyze consumer preferences that affect the choice of goods by the buyer. Task. In the paper proposes a method for determining the preference of consumer characteristics of a product, which is based on the application of the decomposition approach. Based on the information about the popularity rating of brands of goods among buyers, the problem of determining the private utility for each characteristic is solved, and then, the structure of the buyer's preferences is reconstructed for all consumer properties that characterize the studied brands of goods. Results. Within the framework of the axiomatics of the theory of multicriteria utility (MAUT), a midpoint method has been developed to solve the problem of determining the ”weight” coefficients of the relative importance of consumer properties of goods, which is based on the ideas of the theory of comparative identification. As a result of applying the proposed method, its can obtain a unique stable solution to the problem. It is shown that in this case, the problem of determining the preference of consumer characteristics can be reduced to a standard linear programming problem, the solution of which does not present fundamental difficulties. The values of the relative ”weights” of consumer characteristics obtained during the application of the proposed method make it possible to compare them with each other in terms of importance (”usefulness”) for the buyer and, thus, to choose the ”most important” of them or to rank them. The results of computer modeling are presented, which confirm the effectiveness of the method. Conclusion. The practical significance of the results of the work lies in the fact that the proposed method for determining consumer preferences will allow marketers to more accurately position a product on the market, actively use ”targeted” advertising to issue relevant recommendations to customers, and also create new products with the most demanded characteristics to increase sales.Downloads
References
Rajagopal R. Consumer Behavior: External Factors: Analyzing Consumer Behavior to Drive Managerial Decision Making. Contemporary Marketing Strategy. Cham: Springer International Publishing. 2019. P. 35–63. https://doi.org/10.1007/978-3-030-11911-9_2.
Rajagopal R. Consumer Behavior: Internal Factors: Analyzing Consumer Behavior to Drive Managerial Decision Making. Contemporary Marketing Strategy. Cham: Springer International Publishing. 2019. P. 3–33. https://doi.org/10.1007/978-3-030-11911-9_1.
Барден Ф. Взлом маркетинга. Наука о том, почему мы покупаем. К.: Форс. 2021. 304 с.
Moscati I. Measuring utility: from the marginal revolution to behavioral economics. New York, Oxford University Press. 2018. 326 p. https://doi.org/10.1093/oso/9780199372768.001.0001.
Решетилова Т. Процесс исследования потребительских характеристик инновационного товара // Маркетинг в Україні. 2017. №5-6. С 56–63.
Ha T. M. The impact of product characteristics of limited-edition shoes on perceived value, brand trust and purchase intention // Cogent Business & Management. 2021. Vol. 8.Iss. 1. https://doi.org/10.1080/23311975.2021.1953680.
Tang R. Research on Consumer Preferences in Online Courses. // 3-rd International Conference on Data Science and Business Analytics (ICDSBA-2019). 2019. Р. 147-151. https://doi.org/10.1109/ICDSBA48748.2019.00039.
Shabanpour R., Mousavi S. N. D., Golshani N., Auld J., Mohammadian A. Consumer preferences of electric and automated vehicles // 5-th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS-2017). 2017. P. 716-720. https://doi.org/10.1109/MTITS.2017.8005606.
Syarif I. H., Pawana N. I., Meilia Z. D. H., Laksmi D. Consumer Preferences In Purchasing Packaged Meatball Products // Proceedings of the International Conference on Science and Technology (ICST-2018). 2018. Р. 594-603. https://doi.org/10.2991/icst-18.2018.123.
Gao T., Li X., Chai and Y., Tang Y. Deep learning with consumer preferences for recommender system // International Conference on Information and Automation (ICIA-216). 2016. P. 1556-1561. https://doi.org/10.1109/ICInfA.2016.7832066.
Петров К. Э., Кобзев И. В. Прогнозирование предпочтений пользователей на основе анализа их действий // Бионика интеллекта: науч.-техн. журнал. 2018. № 1 (90). С. 97–101.
Петров К. Э., Крючковский В. В. Компараторная структурно-параметрическая идентификация моделей скалярного многофакторного оценивания. Херсон: Олди-плюс. 2009. 294 с.
Dyer, J. S. Multiattribute utility theory (MAUT). Multiple criteria decision analysis. International Series in Operations Research & Management Science. New York: Springer. 2016. Р. 285−314. https://doi.org/10.1007/978-1-4939-3094-4_8.
Keeney R. L., Raiffa, H. Decisions with multiple objectives: preferences and value trade-offs. Cambridge: Cambridge University Press. 1993. 569 р. https://doi.org/10.1017/CBO9781139174084.
Petrov K., Kobzev I., Orlov O., Kosenko V., Kosenko A., Vanina Y. Devising a method for identifying the model of multicriteria expert estimation of alternatives // Eastern-European Journal of Enterprise Technologies. 2021. Vol. 4 № 3 (112). P. 56–65. https://doi.org/10.15587/1729-4061.2021.238020.
Петров Э.Г., Крючковский В.В., Петров К.Э. Нормативная формализация процесса принятия решений в условиях многокритериальности и интервальной неопределенности // Проблеми інформаційних технологій: зб. наук. пр. Херсонського національного технічного університету. 2014. № 1(15). С. 7 – 13.
Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука. 1986. 288 с.
Петров К.Э., Дейнеко А.А., Чалая О.В., Панферова И.Ю. Метод ранжирования альтернатив при проведении процедуры коллективного экспертного оценивания // Радиоэлектроника, Информатика, Управление: науч. журнал. 2020. № 2 (53). С. 84–94. https://doi.org/10.15588/1607-3274-2020-2-9.
Ovezgeldyev A. O., Petrov K. E. Modeling individual multifactor estimation using GMDH elements and genetic algorithms // Cybernetics and Systems Analysis. 2007. Vol. 43. P. 126–133. https://doi.org/10.1007/s10559-007-0031-0.
Ovezgeldyev A. O., Petrov, K. E. Fuzzy-interval choice of alternatives in collective expert evaluation. Cybernetics and Systems Analysis. 2016. Vol. 52. р. 269–276. https://doi.org/10.1007/s10559-016-9823-4.