IMPROVING THE ACCURACY OF CIRCULATING COINS RECOGNITION BY USING A CONVOLUTIONAL NEURAL NETWORK WITH MULTIPLE OUTPUTS

Authors

  • Ye. Vaivala
  • N. Tsyopa

DOI:

https://doi.org/10.26906/SUNZ.2021.3.069

Keywords:

convolutional neural network, multi-output neural network, image recognition, machine learning

Abstract

The article considers the problem of circulating coins recognition using convolutional neural networks. A traditional approach to solving the problem of image recognition, which involves the use of a regular convolutional neural network with one output, is described, the results are shown and analyzed. To improve the recognition accuracy, the architecture of a convolutional neural network with multiple outputs was used. The results obtained were compared with the results of a regular network, the reasons for the differences in the results and the advantages and disadvantages of each of the considered approaches were given

Downloads

Download data is not yet available.

References

Хайкин Саймон. Нейронные сети: полный курс, 2-е изд. : пер. с англ. / Саймон Хайкин. – М. : Издательский дом «Вильямс», 2006. – 1104 с.

Ямпольский Леонід Стефанович. Нейротехнології та нейрокомп'ютерні системи : підручник / Л.С. Ямпольский, О.І. Лісовиченко, В.В. Олійник. – К. : Дорадо-Друк, 2016. – 576 с.

A Survey on Multi-output Learning / [D. Xu, Y. Shi, I. Tsang та ін.]. – 2019. – 21 с.

A survey on multi-output regression / H.Borchani, G. Varando, C. Bielza, P. Larranaga. – 2015. – 27 с.

CS231n Convolutional Neural Networks for Visual Recognition [Електронний ресурс] – Режим доступу до ресурсу: https://cs231n.github.io.

Keras API reference [Електронний ресурс] – Режим доступу до ресурсу: https://keras.io/api/.

LeCun Y. Convolutional Networks for Images, Speech, and Time-Series / Y. LeCun, Y. Benigo. – 1995. – 14 с.

Module: tf | TensorFlow Core v2.6.0 [Електронний ресурс] – Режим доступу до ресурсу: https://www.tensorflow.org/api_docs/python/tf?hl=en.

Published

2021-09-03