IMPROVEMENT OF MATHEMATICAL MODEL OF OPTICAL CHANNELS TRANSMISSION OF INFORMATION
DOI:
https://doi.org/10.26906/SUNZ.2021.1.153Keywords:
telecommunication network, forensic information information system, optical communication channel, mathematical model, continuous integral, parabolic wave equationAbstract
The object of research is the methods of building a mathematical model of optical information transmission channels in the information system of forensic examination, the subject of research - optical information transmission channels. The results of the analysis of information transfer in the information system of forensic examination are given, which established that when using optical communication channels the biggest problems arise due to the heterogeneity of the distribution environment. Therefore, the task of monitoring the state of information exchange in computer networks of the information system is extremely important. The solution of this complex and multifaceted problem in the article is based on previous studies, which were performed using the formalism of continuum integrals (CI) Feiman. , field theory, mathematical statistics and probability theory, nonlinear optics, systems theory. These methods were integrated into the general method, which allowed to improve the mathematical model of optical information transmission channels. Using the analytical relations obtained in the previous article, the equations of correlation functions, including arbitrary order, were formulated. This became possible using Feymann continuous integrals. The analysis of the obtained equations for some partial conditions is given in the article. The article finds that the use of CI allows you to simply write as solutions of equations of any order (although usually writing solutions in the form of CI is a transfer of difficulties from one area - solving equations in private derivatives to another, because accurately calculated CI only special type - Gaussian ), and expressions for such quantities that cannot be described by closed equations, while avoiding the introduction of redundant parameters. The complexity and difficulty of solving equations for moments increases with increasing order: if the equations even for the spatial coherence functions of the first and second orders are solved in general, the analytical solution of the equation for higher moments can no longer be obtained. Usually, to uncouple the chain and obtain closed equations for moments of this order, certain statistical hypotheses about the solution are adopted. When formulating a problem in CI terminals, such statistical hypotheses appear as some approximations for subintegral expression, which allows us to trace the nature of approximations and determine the limits of their applicability. Thus, there is a theoretical possibility of improving the mathematical model of optical information transmission channels based on the use of CI formalism to obtain the equation of correlation functionsDownloads
References
К учук Г . А. Рубан І. В., Давікоза О. П. Концептуальний підхід до синтезу структури інформаційнотелекомунікаційної мережі. Системи обробки інформації : збірник наукових праць. Х.: ХУПС, 2013. – Вип. 7 (114). – С. 106 – 112.
Lemeshko, O., Yevdokymenko, M., Yeremenko, O. (2019), "Model of data traffic QoS fast rerouting in infocommunication networks", Innovative Technologies and Scientific Solutions for Industries, No. 3 (9), P. 127–134.DOI: https://doi.org/10.30837/2522-9818.2019.9.127.
Zykov, I., Kuchuk, N., Shmatkov, S. (2018), "Architecture synthesis of the computer system of transaction control elearning", Advanced Information Systems, Vol. 2, No. 3, P. 60–66. DOI: https://doi.org/10.20998/2522-9052.2018.3.10
Mozhaev, O., Kuchuk, H., Kuchuk, N., Mozhaev, M., Lohvynenco, M. (2017), "Multiservise network security metric", IEEE Advanced information and communication technologies-2017, Proc. of the 2th Int. Conf. Lviv, 2017, P. 133–136.
Kliuiev, O., Mozhaiev, M., Uhrovetskyi, O., Mozhaiev, O., Simakova-Yefremian, E. (2019), "Method of forensic research on image for finding touch up on the basis of noise entropy", 2019 3rd International Conference on Advanced Information and Communications Technologies, AICT 2019 – Proceedings.
Mozhaiev, M., Kuchuk, N., Usatenko M. (2019), "The method of jitter determining in the telecommunication network of a computer system on a special software platform", Innovate Technologies and Scientific Solutions for Industries, No. 4 (10), P. 134-140. DOI: https://doi.org/10.30837/2522-9818.2019.10.134
Rudnytsky, V., Mozhaiev, M. and Kuchuk, N. (2020) “Method for the diagnostics of synchronization disturbances in the telecommunications network of a critical used computer system”, Innovative technologies and scientific solutions for industries, (1 (11), Р. 172-180. DOI:https://doi.org/10.30837/2522-9818.2020.11.172.
Amin Salih M., Potrus M.Y. A Method for Compensation of Tcp Throughput Degrading During Movement Of Mobile Node. ZANCO Journal of Pure and Applied Sciences. 2015. Vol. 27, No 6. P. 59–68.
Кучук, Г.А. Метод уменьшения времени передачи данных в беспроводной сети / Г.А. Кучук, А.С. Мохаммад, А.А. Коваленко // Системи управління, навігації та зв’язку. – К.: ЦНДІ НіУ, 2011. – Вип. 3 (19). – С. 209–213.
Amin Salih Mohammed, Saravana Balaji B., Saleem Basha M S, Asha P N and Venkatachalam K (2020), FCO — Fuzzy constraints applied Cluster Optimization technique for Wireless AdHoc Networks, Computer Communications, Volume 154, Pages 501-508, DOI: https://doi.org/10.1016/j.comcom.2020.02.079.
Sivaram, M., Yuvaraj, D., Mohammed, A. S., Manikandan, V., Porkodi, V., & Yuvaraj, N. (2019). Improved Enhanced Dbtma with Contention-Aware Admission Control to Improve the Network Performance in Manets. CMC-COMPUTERS MATERIALS & CONTINUA, 60(2), pp. 435-454, DOI: https://doi.org/10.32604/cmc.2019.06295
Porkodi V., Sivaram M., Mohammed A.S., Manikandan V. Survey on White-Box Attacks and Solutions. Asian Journal of Computer Science and Technology. Vol. 7, Is. 3. pp. 28–32.
Кучук Г. А. Метод параметрического управления передачей данных для модификации транспортных протоколов беспроводных сетей / Г.А. Кучук, А.С. Мохаммад, А.А. Коваленко // Системи обробки інформації. – 2011. – No 8(98). – С. 211-218.
Sivaram, M., Yuvaraj, D., Amin Salih, Mohammed, Porkodi, V. and Manikandan V. (2018), “The Real Problem Through a Selection Making an Algorithm that Minimizes the Computational Complexity”, International Journal of Engineering and Advanced Technology, Vol. 8, iss. 2, 2018, pp. 95-100.
Manikandan, V, Porkodi, V, Mohammed, A.S. and Sivaram M. (2018), “Privacy Preserving Data Mining Using Threshold Based Fuzzy cmeans Clustering”, ICTACT Journal on Soft Computing, Vol. 9, Issue 1, 2018, pp.1813-1816. DOI: 10.21917/ijsc.2018.0252
Mohammed, A. S., Meleshko, Y., & Serhii, S. (2019, December). Collaborative Filtering Method with the use of Production Rules, 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), pp. 387-391, IEEE, DOI: https://doi.org/10.1109/ICCIKE47802.2019.9004257
Selvaraj, J., & Mohammed, A. S. (2020), Mutation-based PSO techniques for optimal location and parameter settings of STATCOM under generator contingency, International Journal of Intelligence and Sustainable Computing, 1(1), 53-68, DOI: https://doi.org/10.1504/IJISC.2020.104827
Можаєв М.О. Математична модель оптичних каналів передачі інформації Телекомунікаційні та інформаційні технології. – Київ: ДУТ, 2020. – No 1. – С. 95 – 99.
Feynman, R. P. Quantum mechanics and path integrals / R. P. Feynman, A. R. Hibbs. – McGraw-Hill, New York, 1965. – 377 р
Roepstor G. Path Integral Approach to Quantum Physics, Springer, Heidelberg, 1996. – 220 р.
Chaichian M., Demichev A. Path Integrals in Physics. Vol. 1. – IOP Publishing, London, 2001. – 352 p.
Kleinert H. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Fi-nancial Markets, – World Scientific Publishing Co., Singapore, 2004. – 1300 p.
LaChapelle J. Path integral solution of linear second order partial differential equations I: the general construction // Ann. Phys. – 2004. – 314. – Р. 362 – 395.
LaChapelle J. Path integral solution of linear second order partial differential equations II: elliptic, parabolic, and hyperbolic cases // Ann. Phys. – 2004. – 314. – Р. 396 – 424.
Егоров, А. Д. Введение в теорию и приложения функционального интегрирования / А. Д. Егоров, Е. П. Жидков, Ю. Ю. Лобанов. – М.: Физматлит, 2006. – 400 с.
Horacio, S. Wio. Application of path integration to stochastic process: an introduction / S. Wio. Horacio. – World Scientific Publishing Company, 2013. – 176 р.
Constantinou J. Path-integral analysis of tapered, graded-index waveguides // J. Opt. Soc. Amer. A. – Aug. 1991. – V. 8. – Р. 1240 – 1244.
Nevels R.D. Miller J.A. Miller R.E. A path integral time-domain method for electromag-netic scattering // IEEE Trans. Antennas Propagat. – Apr. 2000. – V. 48. – Р. 565 – 573.
Yeh K.C., Lin K.H., Wang Y. Effect of irregular terrain on waves – a stochastic approach // IEEE Trans. Antennas Propagat. – Feb. 2001. – V. 49. – Р. 250 – 259.
Levy M. Parabolic equation methods for electromagnetic wave propagation. - London: IEE, 2000. – 348 p.