THE DECOMPOSITION METHOD FOR SOLVING ANALYSIS PROBLEMS OF HIGH DIMENSIONAL MARKOV SYSTEMS

Authors

  • L. Ruskin
  • O. Sira
  • R. Korsun

DOI:

https://doi.org/10.26906/SUNZ.2020.2.090

Keywords:

high-dimensional markov system, system decomposition method, computing technology implementation procedure

Abstract

The subject of the article is the decomposition computing procedure, which uses the method of phase system states enlargement. The goal is to develop a special method of analysis of high-dimensional Markov systems. The method should analytically provide obtaining explicit relations that determine the dependence of system state probabilities distribution on numerical values of system parameters. Task: Consider the problem of analyzing high-dimensional Markov systems with many possible states. Propose a decomposition computational procedure that uses the method of phase system states enlargement. Results: The analysis problem of high-dimensional Markov systems with a large number of possible states is considered. The decomposition computational procedure using the method of phase system states enlargement is proposed. Conclusions: The proposed method allows to reduce the solution of the initial complex problem to a set of simpler small dimension problems. The method is analytically provides obtaining explicit relations that determine the dependence of system state probabilities distribution on numerical values of system parameters. The technology solution for solving the problem is illustrated by two examples

Downloads

References

Барича-Рид А. Элементы теории марковских процессов и их приложения. – М: Наука, 1963. – 406 с.

Сарымсаков Т. Основы теории процессов Маркова. – М: Гостехиздат, 1994. – 386 с.

Булинский А.В., Ширяев А.Н. Теория случайных процессов. – М: Физматлит, 2005. – 396 с.

Кремер Н.Ш.Теория вероятностей и математическая статистика. – М: ЮНИТИ-ДАТА, 2004. – 312 c.

Дынкин Е.Б., Марковские процессы. – М: Наука, 1987. – 632 с.

Manhuing C.D., Schütze H. Foundations of statistical processing. – MIT Press, 1999. 264 p.

Ramage D., Hidden D. Markov models fundament. – Standard school of engineering, 2011. 194 p.

Алхимов В.И. Марковские модели в задачах статистики и прогнозирования. – М: ППУнивер, 2013. – 171 с.

Раскин Л.Г., Серая О.В. Нечеткая математика. Основы теории. Приложения. – Х: Парус, 2008. – 352 с.

Pawlak Z., Hidden D. Rough sets. // International journal of information and computer sciences, 1982. – vol II, No 5. P. 341-356.

Raskin L., Sira O. Fuzzy models of rough mathematics // Eastern European journal of Enterprise Technologies, 2016. Vol 5, No 6. p. 53-60.

Raskin L., Sira O. Methods of solving fuzzy problem of mathematical programing // Eastern European journal of Enterprise Technologies, 2016 – vol 5, No 4. P. 23-28.

Published

2020-05-28