INCREASING THE EFFICIENCY OF FIBER OPTIC COMMUNICATION CHANNELS

Authors

  • I. Nevlyudov
  • B. Malik
  • O. Tokareva
  • V. Nevlyudova

DOI:

https://doi.org/10.26906/SUNZ.2020.1.151

Keywords:

optical fiber, emitter, power, transmission efficiency

Abstract

Fiber optic systems are one of the most promising areas in the development of the physical basis of the information space. When implementing fiber-optic communication lines, it is often necessary to match the optoelectronic components with different cross sections of the emitting and receiving regions and various numerical apertures. A variant of this task may be the connection of single-mode and multimode fibers or emitters and photodetectors with fibers of various types. One of the methods of such matching is the creation of cascading fibers in which the lens fiber and several sections of the gradient fibers are integrated into a single-mode fiber. The subject of the study is the technology of elements of fiber-optic transmission systems. The objective of this work is to create components of fiber-optic communication lines that can improve the efficiency of inputting radiation from a source into an optical fiber, in particular single-mode. To achieve this goal, it is necessary to solve the following tasks: to consider the factors affecting the energy loss during generation and input of radiation from a source into an optical fiber, as well as to develop and implement a system of matching elements and give a sequence of actions for efficient input of radiation from a source into a single-mode fiber. Conclusion: during the work, the factors affecting the parameters of the radiation input into the fiber were investigated and the design of the resonant system for the formation of the electromagnetic radiation flux most suitable for input into the single-mode fiber was proposed, and a sequence of actions was proposed to determine the best relative position of the emitter and the fiber. The paper considers the problem and reasonable ways to increase the efficiency of radiation input into an optical fiber by using a resonator and studying the optimal conditions for the mutual arrangement of the fiber and the source. The proposed technical and technological implementation of the process makes it possible to introduce large power into the optoelectronic information transmission lines, which increases the efficiency of radiation input up to 20 dB. Determining the accuracy of the location of the connecting plane in the matching devices and the relative position of the emitters and the optical fiber can reduce the loss in the connection to 0.1 dB, transmit information with greater reliability over long distances without regeneration and maintain the operability of the fiber-optic system under mechanical, climatic and radiation factors

Downloads

References

Pachnicke S. Fiber-Optic Transmission Networks. Springer-Verlag Berlin Heidelberg, 2012.

Govind P. Agrawal. Fiber-Optic Communications Systems, Third Edition. John Wiley & Sons, Inc, 2002.

Ivanov A. Fiber Optics: Components, Communications Systems, Measurements. М.: Syrus Systems, 1999.

Косенко В.В., Кучук Н.Г. Моделювання технічної структури інформаційно-телекомунікаційної мережі на основі конкретної реалізації інформаційної структури. Системи обробки інформації. 2016. Вип.9 (146). С. 167-171.

Косенко В.В., Артюх Р.В., Роговой А.И. Вариантный синтез иерархии структур инфокоммуникационной сети. Системи управління навігації та зв’язку. Полтава. 2017. Випуск 4 (44). С. 60-63.

Bass M., Van Stryland E.W. Fiber Optics Handbook: Fiber, Devices, and Systems for Optical Communications. McGrawHill Professional, 2002.

Patent G02B 6/22 “Monomode Optical Fibre’, 2001.

H. Yoda, T. Endo, and K. Shiraishi “Cascaded GI–fiber chips with a wedge–shaped end for the coupling between an SMF and a high–power LD with large astigmatism,” in J. Lightw. Technol, vol. 20, no. 8, 2002, pp. 1545–1548.

Филипенко, А.И., Малик Б.А., Селенкова Н.П., Гончар В.В. Контроль геометрических параметров каскадных оптоволоконных структур. Восточно–Европейский журнал передовых технологий. 2012. No3/5(57). C.28–31.

I Sh Nevliudov, AI Filipenko Method of the Interferential Images Analysis During Testing of Quality Parameters of Fiber- Optical Components Surface / News of Engineering Sciences Academy of Ukraine: Mechanical engineering and progressive technologies, 2004, No 24, р. 81-87

И.Ш. Невлюдов, А.И. Филипенко, Б.А. Малик Методология и оборудование контроля параметров компонентов волоконно-оптических систем передачи информации / Прикладная радиоэлектроника: сб. АН Прикладной радиоэлектроники, 2002, No1. – с. 51-56.

B. Malyk, О. Tokarieva, S. Malyk-Zamorii “Optical fiber structures performance enhancement under the conditions of ionizing radiation high power levels,” in Problems of Atomic Science and Technology, no. 2 (114), 2018, pp. 13-18.

Patent UA115811 “Method for optical fibers matching section manufacturing”, 2017.

Patent UA122687 “Method for optical fibers matching section manufacturing”, 2018.

Published

2020-02-26

Issue

Section

Communication and Radiolocation