METHOD OF DESIGN AND SYNTHESIS OF INFORMATION MODELS FOR EVALUATION OF CONTROLS IN AN AUTOMATED AIR TRAFFIC CONTROL SYSTEM

Authors

  • M. Pavlenko
  • M. Petrushenko
  • S. Shylo
  • I. Borozenec
  • O. Dmitriyev

DOI:

https://doi.org/10.26906/SUNZ.2019.4.003

Keywords:

situation, operator activity, mapping, information element

Abstract

The article gives an approach to the design and synthesis of information models for the information support system of decision makers in automated air traffic control systems. An analysis of possible structures for the construction of information models suggests that for relatively simple conditions of the situation it is advisable to use a linear or hierarchical structure. The complex situation of the situation leads to a significant increase in the amount of information to display, and then it is advisable to use the combined structure of the information model. The given relations provide an opportunity to evaluate the characteristics of the structure of information models at the stage of their ergonomic design and determine the number of information elements in one display program, taking into account the minimization of the search time of the specified elements. Possible ways of sharing the use of individual, group and collective information display tools are considered. The sequence and content of operations are proposed in developing requirements for the form of information elements. The study of the effectiveness of using different forms of presentation of information elements is presented. As a result, the structure, content and consistency of the stages of the method of designing and synthesizing information models for informational support of decision-making in the assessment of the situation are presented, which, in contrast to the existing ones, takes into account the stages of activity and the specifics of tasks solved by operators in automated air traffic control systems.

Downloads

Download data is not yet available.

References

Nolan, M. (2010), Fundamentals of air traffic control, Cengage learning.

Card S. K. The psychology of human-computer interaction. – CRC Press, 2018. – 513 р.

Mattsson S. Towards increasing operator wellbeing and performance in complex assembly. – Department of Industrial and Materials Science, Chalmers University of Technology, 2018. – 64 р.

Isaac A. R., Ruitenberg B. Air traffic control: human performance factors. – Routledge, 2017. – 365 р.

Szalma J. L. On the application of motivation theory to human factors/ergonomics: Motivational design principles for human–technology interaction //Human Factors. – 2014. – Т. 56. – №. 8. – С. 1453-1471.

Reason J. Managing the risks of organizational accidents. – Routledge. 2016. – 252 р.

Dehais, F., Causse, M., and Tremblay, S. Mitigation of conflicts with automation use of cognitive counte rmeasures. Human Factors: The Journal of the Human Factors and Ergonomics Society 53, 5 (2011),448–460.

Walter Bich. Evolution of the ‘Guide to the Expression of Uncertainty in Measurement’ / Walter Bich, Maurice G. Cox, Peter M. Harris. // Metrologia. – 2006. – № 43. – P. 161-166.

Insaurralde C. C., Blasch E. Ontological knowledge representation for avionics decision-making support //2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). – IEEE, 2016. – С. 1-8.

Математические основы эргономических исследований: монография / П. Г. Бердник, Г. А. Кучук, Н. Г. Кучук, Д. Н. Обидин, М.А. Павленко, А.В. Петров, В.Н. Руденко, О.И. Тимочко. – Кропивницкий: КЛА НАУ, 2016. – 248 с.

Формалізований опис процесу відбору інформаційних ознак для формування моделі повітряної обстановки / Ю. І. Полонський, І. О. Борозенець, С. Г. Шило, М. І. Литвиненко // Збірник наукових праць Харківського національного університету Повітряних Сил. – 2016. – № 2. – С. 115-117.

Полонський Ю. І. Метод відбору інформаційних ознак для формування моделі повітряної обстановки / Ю. І. Полонський, І. О. Борозенець, С. Г. Шило // Системи управління, навігації та зв’язку. – Полтава: Полтавський національний технічний університет. – 2015. – № 2. – С. 109-112.

Dehais, F., Causse, M., Vachon, F., and Tremblay, S. Cognitive conflict in human–automation interactions: a psychophysiological study. Applied ergonomics 43, 3(2012), 588–595.

Sarter, N. B., Woods, D. D., and Billings, C. E. Automation surprises (1997), 1926–1943.

Кучук Г. А. Метод параметрического управления передачей данных для модификации транспортных протоколов беспроводных сетей / Г.А. Кучук, А.С. Мохаммад, А.А. Коваленко // Системи обробки інформації. – 2011. – № 8(98). – С. 211-218.

Sivaram, M., Batri, K., Amin Salih, Mohammed and Porkodi V. (2019), “Exploiting the Local Optima in Genetic Algorithm using Tabu Search”, Indian Journal of Science and Technology, Volume 12, Issue 1,2019. DOI: 10.17485/ijst/2019/v12i1/139577

Sivaram M., Yuvaraj D., Amin Salih Mohammed, Porkodi, V., ManikandanV. The Real Problem Through a Selection Making an Algorithm that Minimizes the Computational Complexity. International Journal of Engineering and Advanced Technology. 2018. Vol. 8, iss. 2. pp. 95-100.

Pizziol, S., Tessier, C., and Dehais, F. Petri net-based modelling of human–automation conflicts in aviation. Ergonomics 57, 3 (2014), 319–331.

Diez, M., Boehm-Davis, D. A., Holt, R. W., Pinney,M. E., Hansberger, J. T., and Schoppek, W. Tracking pilot interactions with flight management systems through eye movements. In Proc. of the 11thInt. Symp. on Aviation Psychology(2001), 1–6.

Kuchuk G., Kovalenko A., Komari I.E., Svyrydov A., Kharchenko V. Improving big data centers energy efficiency: Traffic based model and method. Studies in Systems, Decision and Control, vol 171. Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (Eds.). Springer Nature Switzerland AG, 2019. Pp. 161-183. DOI: http://doi.org/10.1007/978-3-030-00253-4_8

Коваленко А. А., Кучук Г. А. Методи синтезу інформаційної та технічної структур системи управління об’єктом критичного застосування. Сучасні інформаційні системи. 2018. Т. 2, № 1. С. 22–27. DOI: https://doi.org/10.20998/2522-9052.2018.1.04

.Свиридов А. C., Коваленко А. А., Кучук Г. А. Метод перерозподілу пропускної здатності критичної ділянки мережі на основі удосконалення ON/OFF-моделі трафіку. Сучасні інформаційні системи. 2018. Т. 2, № 2. С. 139–144. DOI: https://doi.org/10.20998/2522-9052.2018.2.24

Svyrydov, A., Kuchuk, H., Tsiapa, O. (2018), “Improving efficiently of image recognition process: Approach and case study”, Proceedings of 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies, DESSERT 2018, pp. 593-597, DOI: http://dx.doi.org/10.1109/DESSERT.2018.8409201

Sarter, N. B., Mumaw, R. J., and Wickens, C. D. Pilots’ monitoring strategies and performance on automated flight decks: An empirical study combining behavioral and eye-tracking data. Human Factors: The Journal of the Human Factors and Ergonomics Society 49, 3(2007), 347–357.

Rushby, J. Using model checking to help discover modeconfusions and other automation surprises. Reliability Engineering &System Safety 75, 2 (2002), 167–177.

Published

2019-09-11

Most read articles by the same author(s)