FUNCTIONAL MODEL OF STAGES OF DIAGNOSTIC AND TREATMENT MEASURES DEVELOPMENT IN DECISION SCIENCE SUPPORT IN MEDICINE
DOI:
https://doi.org/10.26906/SUNZ.2019.2.144Keywords:
computing system, support decision science, diagnostics, medical action, functional model, diagnostic property, decision ruleAbstract
The subject matter of the article is the complex of diagnostic and treatment measures. The goal of this research is to formalize the stages of diagnostic and treatment measures while designing the computing system to support the decision science in medicine. The tasks to be solved are: to formalize the task of comprehensive assessment of the stages of diagnostic and treatment measures, to determine the set of inputs, outputs and control actions for every stage of diagnostic and treatment measures, to develop a functional model of diagnostic and treatment measures process and perform its decomposition. To reach the set goal the following methods were used while the research: IDEF0 functional modeling methodology to produce functional model, methods of morphological analysis for diagnostically significant structural elements of biomedical signals and images selection, methods of clusterization for the synthesis of hierarchical structures of diagnosable states (decision tree) and diagnostic properties, methods of information science for the synthesis of the structure of informative properties, methods of decision science for the synthesis of diagnostic decision rule. Conclusions. The scientific novelty consists in the following: a functional model of diagnostic and treatment measures has been developed, which is the basis for developing a structural and mathematical model, as well as for developing a structure to support decision science for diagnostic and treatment measures, which ultimately leads to the medical services efficiency increase and minimizes the risks of medical malpractice. Further research is aimed at using a more complex presentation of medical actions, including, if necessary, ranking and numerical components, forming an appropriate space when implementing other types of medical actions.Downloads
References
Кобринский Б.А. Системы поддержки принятия решений в здравоохранении и обучении / Б.А. Кобринский // Врач и информационные технологии, 2010, 2: 39–45.
Поворознюк А. И. Системы поддержки принятия решений в медицинской диагностике. Синтез структурированных моделей и решающих правил / А. И. Поворознюк – Saarbrücken Germany: LAP LAMBERT Academic Publishing GmbH & Co. KG, 2011. – 314 с.
Кобринський Б. А. Ретроспективний аналіз медичних експертних систем / Б. А. Кобринський // Новини штучного інтелекту. – 2005. – № 2. – С. 6–18.
Доан Д.Х., Крошилин А.В., Крошилина С.В. Обзор подходов к проблеме принятия решений в медицинских информационных системах в условиях неопределенности. Фундаментальные исследования, 2015, 12 (1): 26–30.
Innocent P.R. Fuzzy Methods and Medical Diagnosis / P.R. Innocent, R.I. John, J.M. Garibaldi // The Centre for Computational Intelligence Department of Computer Science De Montfort University, Leicester, UK. – 2004. – C. 4–17.
Sadegh-Zadeh K. The Logic of Diagnosis / K. Sadegh-Zadeh // Philosophy of Medicine – 2011. – P. 357–424.
Ceylana R. A novel approach for classification of ECG arrhythmias: Type–2 fuzzy clustering neural network / R. Ceylana, Y. Özbaya, B. Karlikb // Expert Systems with Applications. – 2009. – Vol. 36 (3). – P. 6721–6726.
Trends in the growth of literature of telemedicine: A bibliometric analysis / Yang Y. T., Iqbal U., Horn-Yu Ching J. [et al.] / Computer Methods and Programs in Biomedicine – Vol. 122 (3) –2015. – P. 471–479.
Владзимирский А. В. Телемедицина : монография / А. В. Владзимирский. – Донецк: ООО «Цифровая типография», 2011. – 437 с.
Hwang D. Monitoring Progress and Adherence with Positive Airway Pressure Therapy for Obstructive Sleep Apnea: The Roles of Telemedicine and Mobile Health Applications / D. Hwang // Sleep Medicine Clinics – Vol. 11 (2) – 2016. – P. 161–171.
Файнзильберг Л., Сорока Т. Разработка телемедицинской системы для дистанционного мониторирования сердечной деятельности на основе метода фазаграфии. Восточно-Европейский журнал передовых технологий, 2015, vol. 6, № 9(78): 37–46. DOI: 10.15587/1729–4061.2015.55004.
Файнзильберг Л. С. Обобщенный метод обработки циклических сигналов сложной формы в многомерном пространстве параметров / Л. С. Файнзильберг // Проблемы управления и информатики. – 2015. – № 2. – C. 58–71.
Trzupek M. Intelligent image content semantic description for cardiac 3D visualisations / M. Trzupek, M. R. Ogiela, R. Tadeusiewicz // Engineering Applications of Artificial Intelligence – Vol. 24 (8) – 2011. – P. 1410-1418.
Раціональна діагностика та лікування в дерматології та венерології / За ред. І.І. Маврова // Довідник лікаря Дерматолог – Венеролог. – К.: ТОВ "Доктор-Медіа", 2007. – 344 с.
Компендиум 2015 – лекарственные препараты /Под ред. В.Н. Коваленко, А.П. Викторова. [Електронный ресурс] http://www.compendium.com.ua.