INVESTIGATION OF THE HIERARCHICAL FEATURES SYSTEM IN THE BLOCK FEED OF THE DESCRIPTION IN THE COMPOSITION OF THE IMAGE KEY POINT

Authors

  • V. Gorokhovatskyi
  • D. Rudenko
  • Т. Siryk

DOI:

https://doi.org/10.26906/SUNZ.2019.2.069

Keywords:

structural image recognition methods, key point, ORB detector, descriptor, fragment data distribution, descriptive relevance, Manhattan metric, speed of relevancy estimation

Abstract

The subjects of the paper are the hierarchical models for estimation of the image descriptions relevance when recognizing visual objects in computer vision systems. The goal is to modify an image structural recognition method based on the implementation of block data models with the integration of probability distributions. The tasks are: include the development of mathematical and software models of efficient hierarchical data processing for determining the relevance of structural descriptions, investigation of the properties of these models, evaluation of the effectiveness of image processing. The methods are used: an ORB detector to form the key point descriptors, data mining, methods for construction of the bit-data distribution, a method of metric relevance estimation, software modeling. The following results were obtained. The transition from the sets of descriptors to distributions of fragments, the construction of hierarchical features provide the necessary recognition performance. Data processing and analysis are performed several times faster compared to ones based on distributions. Conclusions. The contribution of the paper is the improvement of the structural image recognition method with the introduction of a block description structure using integrated distribution values for fragments of the set of key point descriptors. The practical significance of the paper is the achievement of an increase of image relevance calculation speed, confirmation of the effectiveness of hierarchical features using image examples, obtaining of an application software models for research and implementation of classification methods in computer vision systems

Downloads

References

Гороховатский В.А. Структурный анализ и интеллектуальная обработка данных в компьютерном зрении / В.А. Гороховатский. – Х.: Компания СМИТ, 2014. – 316 с.

Gorokhovatsky, V.O. and Gadetska, S.V., (2019) Determination of Relevance of Visual Object Images by Application of Statistical Analysis of Regarding Fragment Representation of their Descriptions, Telecommunications and Radio Engineering, 78 (3), pp. 211–220.

Gorokhovatsky V.A. Efficient Estimation of Visual Object Relevance during Recognition through their Vector Descriptions / V.A. Gorokhovatsky // Telecommunications and Radio Engineering. – 2016, Vol. 75, No 14. – pp. 1271–1283.

Stefan Leutenegger, Margarita Chli, Roland Y. Siegwart. BRISK: Binary Robust Invariant Scalable Keypoints. – Computer Vision (ICCV), pp. 2548 – 2555, 2011.

Гороховатський В.О. Статистичні розподіли та ланцюжкове подання даних при визначенні релевантності структурних описів візуальних об’єктів / В.О. Гороховатський, С.В. Гадецька, Р.П. Пономаренко // Системи управління, навігації та зв’язку. – 2018. – №6 (52). – C. 87–92.

Sivaram, M., Porkodi, V., Mohammed, A.S., Manikandan V. Detection of Accurate Facial Detection Using Hybrid Deep Convolutional Recurrent Neural Network. ICTACT Journal on Soft Computing. 2019. Vol. 09, Issue 02. pp. 1844-1850. DOI: 10.21917/ijsc.2019.0256

Yogesh Awasthi, R P Agarwal, B K Sharma, "Intellectual property right protection of browser based software through watermarking technique", International Journal of Computer Applications, vol. 97, no. 12, 2014, pp. 32-36.

Yogesh Awasthi, R P Agarwal, B K Sharma, "Two Phase Watermarking for Security in Database", International Journal of Computing, vol. 4, no. 4, 2014, pp. 821-824.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G., (2011) ORB: an efficient alternative to SIFT or SURF, IEEE International Conference on Computer Vision (ICCV), Proceedings, pp. 2564-2571.

Шапиро Л. Компьютерное зрение/ Л. Шапиро, Дж. Стокман.; пер. с англ. – М.: БИНОМ. Лаборатория знаний, 2006. – 752 с.

Прохоренок Н.А. OpenCV и Java. Обработка изображений и компьютерное зрение / Н. Прохоренок. – СПб.: БХВПетербург, 2018. – 320 с.

Adelson E.H. Pyramid methods in image processing [Електронний ресурс] / E. Adelson, C. Anderson, J. Bergen, P. Burt, J. Ogden // RCA Engeneer. – Vol. 29(6), pp. 33-41. Режим доступу: http://persci.mit.edu/pub_pdfs/RCA84.pdf

Published

2019-04-11

Most read articles by the same author(s)