FEATURES OF DETERMINATION OF EXACTNESS OF MEASURING OF INERTIAL DEVICES OF DETERMINATION OF COORDINATES
DOI:
https://doi.org/10.26906/SUNZ.2018.6.003Keywords:
inertial navigator, aircraft, measuring, exactness, coordinatesAbstract
It is shown in the article, that property of the quickly turned gyroscopes to keep unchanging direction of axis of rotation in space (gyroeffect) is fixed in basis of functioning of existent devices of inertial navigators of aircrafts. Thus, in general case, the errors of gyroscopic devices (devices) depend both on their construction and from the terms of their work. An actual scientific task is reasonable is realization of analysis of features of determination of exactness of measuring of inertial navigators at the calculation of coordinates of aircraft. It is resulted, that the known method of partial indemnification of errors of measuring an analytical way on the basis of calculation of their values, is imperfect. It is suggested for a calculation and further indemnification of errors of the navigation measuring to work out the mathematical model of errors of inertial navigators. Such model analytically describes connection between the entrance errors of inertial navigators, conditioned lacks of gyroscopes and accelerometer, and her initial errors in determination of coordinates of aircraft. Offered three constituents of mathematical model are blocks of calculation of coordinates of aircraft. The aggregate of analytical correlations, that makes the offered mathematical model of errors of inertial navigators, is got. Reasonably, that a range of initial errors of inertial navigators is small, that allows to apply for research the dynamics of errors the known methods of linearizing of functions. The dynamics of formation of errors is considered in the block of calculation of angulators and moments. Efficiency of indemnification growing in course of time functioning of errors of inertial navigators depends on that, as far as exactly the numeral values of displacement gyroscopes (permanent and fluctuation constituents) and errors of accelerometer are known a priori. Further researches it is suggested to direct for verification of adequacy of the offered mathematical model of errors of inertial navigators to the real processes by means of results of imitation design with the use of nonlinear model of forming of errors.Downloads
References
К вопросу построения автоматизированной системы мониторинга параметров высокоточного навигационного поля / Каретников В.В., Пащенко И.В., Соколов А.И., Кузнецов И.Г. // Морская радиоэлектроника. – 2015. – № 2 (52). – С. 24-27.
Соловьев И. Морская радиоэлектроника / И. Соловьев. – Санкт-Петербург: Политехника, 2003. – 185 с.
Rogers, R.M. (2003), “Applied Mathematics in Integrated Navigation Systems”, AIAA Educational Series, American Institute of Aeronautics and Astronautics, Inc, Reston, VA.
Grewal M.S., Weill L.R., Andrews A.P. (2007), “Global Positioning Systems, Inertial navigation and integration”, Wiley, New York.
Алешин Б.С. Ориентация и навигация подвижных объектов: современные информационные технологии / Б.С. Алешин, К.К. Веременко. – М.: Наука, 2006. – 424 с.
Admiralty list of radio signals “Global maritime distress and safety system (GMDSS)”. Vol 5. NP 285. 2000. – 338 p.
Герасимов С.В. Розробка та дослідження методу розрахунку достовірності вимірювального контролю параметрів Системи управління, навігації та зв'язку, 2018, радіотехнічних систем морського транспорту / С.В. Герасимов, Ю.Є. Шапран, В.В. Кірвас // Системи озброєння і військова техніка. – 2017. – № 4 (52). – С. 5-10.
Басов В.Г. Измерительные сигналы и функциональные устройства их обработки / В.Г. Басов. – Минск, 2013. – 119 с.
Norman Friedman (2006), “The Naval Institute Guide to World Naval Weapon System”, Naval Institute Press, 858 p.
Страхов А.Ф. Автоматизированные измерительные комплексы / А.Ф. Страхов. – М.: Энергоиздат, 1990. – 216 с.
Герасимов С.В. Модель похибок навігації в аномальному гравітаційному полі Землі / С.В. Герасимов, Д.В. Макарчук, О.І. Костенко // Збірник наукових праць ХНУПС. – 2018. – № 3(57). – С. 109-114. – DOI: 10.30748/zhups.2018.57.16.
Ruban, I. Redistribution of base stations load in mobile communication networks / I. Ruban, H. Kuchuk, A. Kovalenko // Innovative technologies and scientific solutions for industries. – 2017. – No 1 (1) – P. 75-81. – DOI : https://doi.org/10.30837/2522-9818.2017.1.075
Borisenko M.V., Gerasimov S.V., Kostenko O.І., Makarchuk D.V. (2018), Development of optimum navigation information processing algorithm, Science and Technology of the Air Force of Ukraine, No. 3(32), pp. 38-44. – DOI: 10.30748/nitps.2018.32.06.
Qriffiths В.E. Optimal control of jump-linear gaussian systems / В.E. Qriffiths, K.A. Loparo // Int. J. of control. – Vol. 42, No. 4. – 1985. – P. 791-819.
Герасимов С.В. Методика обґрунтування номенклатури параметрів контролю радіотехнічних систем і призначення їх допустимих відхилень / С.В. Герасимов, В.В. Грідіна // Системи обробки інформації. – 2018. – Вип. 2 (153). – C. 159-164. – DOI: https://doi.org/10.30748/soi.2018.153.20.