EXACT SOLUTIONS OF (1+2)-DIMENSIONAL NONLINEAR EQUATION OF REACTION-CONVECTION-DIFFUSION

Authors

  • Yu. Prystavka

DOI:

https://doi.org/10.26906/SUNZ.2018.3.078

Keywords:

(1 2)-dimensional equation of reaction-convection-diffusion, symmetry, the method of Lie, maximal invariance algebra, invariant anzatz, reduced system, exact solutions

Abstract

The subject of study in the article is the application of the Lie's method to the construction of invariant anzatze, the reduction and the finding of exact solutions (1+2)-dimensional equation of reaction-convection-diffusion. The goal is to construct exact solutions (1+2)-dimensional equation of reaction-convection-diffusion based on the use of symmetric properties of this equation. The problrem is to use the Lie's symmetry of (1+2)-dimensional equation of the reaction-convection-diffusion for constructing invariant anzatze, reduction and finding its exact solutions. For the realization of this problem the method of Sophus Lie is used, which based on the principle of symmetry. According to the method of S. Lie, differential equations with partial derivatives possessing classical Lie's symmetry can be reduced to ordinary differential equations with the help of special substitutions (anzatze). We can construct exact solutions of the initial differential equation with partial derivatives, having solved the reduced equations. Conclusions: symmetric properties of (1+2)-dimensional reaction-convection-diffusion for the construction of invariant anzatze, the reduction and the finding of its exact solutions.

Downloads

Download data is not yet available.

References

Камке Э. Справочник по обыкновенным дифференциальным уравнениям. – М.: Наука, 1965. – 704 с.

Овсянников Л.В. Групповой анализ дифференциальных уравнений / Л.В. Овсянников. – М.: Наука, 1978. – 400 с.

Овсянников Л.В. Групповые свойства уравнений нелинейной теплопроводности. Доклады АН СССР / Л.В. Овсянников. – Т.125, 1959. – C. 492-495.

Олвер П. приложения груп Ли к дифференциальным уравнениям / П. Олвер. – М.: Мир, 1989. – 581с.

Фущич В.И. О нелокальних анзацах для одного нелинейного одномерного уравнения теплопроводности / В.И. Фущич, Н.И. Сєров, Т.К. Амеров. – К.: Наук. думка, 1989. − 339 с.

Фущич В.И. Симметричний анализ и точные решения уравнений нелинейной математической физики / В.И. Фущич, В.М. Штелень, Н.И. Серов. – К.: Наук. думка, 1989. – 339 с.

Akhatov I.S. Nonlocal symmetries. Heuristicapproach. / I.S. Akhatov, R.K. Gazizov, N.H. Ibragimov // J. Sov. Math. – 55 (1991). – P. 1401-1450.

King J.R. Some non-local transformations between nonlinear diffusion equation / J.R. King // Journal of Mathematical Phisics. – 1990. – V. 23 – P. 5441-5464.

Published

2018-07-03

Issue

Section

Mathematical Models and Methods