ПРО ОСОБЛИВОСТІ ФОРМУВАННЯ ВХІДНИХ ДАНИХ У СІАМСЬКІЙ НЕЙРОННІЙ МЕРЕЖІ
Ключові слова:
сіамська нейронна мережа, дескриптор, тестування нейронної мережі
Анотація
Проаналізовано різні способи формування вхідних даних та оцінок дескрипторів сіамської нейронної мережі СНМ) для порівняння зображень рукописних цифр. Запропоновано спосіб використання квазівипадкової N-вимірної послідовності векторів, сформованих відповідно до методу Соболя, для формування дескрипторів, які, спільно із зображеннями, є вхідними даними для навчання СНМ та її подальшого використання. Виконано тестування сіамської нейронної мережі з використанням отриманих оцінок дескрипторів зображень рукописних цифр. Під час тестування СНМ використовувався набір MNIST. Результат тестування моделі СНМ дав значення показника accuracy, що дорівнює 0.9706. Результати тестування засвідчили, що розглянуті оцінки дескрипторів h1 і h2 зменшують кількість помилок під час тестування порівняно з використанням дескриптора h0 на основі квазівипадкової N-вимірної послідовності векторів.Завантаження
Дані про завантаження поки що недоступні.
Посилання
1. Chicco D. Siamese Neural Networks: An Overview. Artificial Neural Networks. 2021. MIMB, vol. 2190. P. 73–94. URL: https://link.springer.com/protocol/10.1007/978-1-0716-0826-5_3
2. Шостак А. В. Про особливості формування дескрипторів у сіамській нейронній мережі. Системи управління, навігації та зв'язку. Полтава: НУ ПП, 2021. Вип. 4(66). С. 91–96. DOI: https://doi.org/10.26906/SUNZ.2021.4.079
3. Contrastive loss for Siamese networks with Keras and TensorFlow. URL: https://www.pyimagesearch.com/2021/01/18/contrastive-loss-for-siamese-networks-with-keras-and-tensorflow/
4. Image similarity estimation using a Siamese Network with a contrastive loss. URL: https://keras.io/examples/vision/siamese_contrastive/
5. The Mnist database of handwritten digits. URL: http://yann.lecun.com/exdb/mnist/
6. Owen, A.B. On Dropping the First Sobol’ Point. In: Keller, A. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2020. Springer Proc. in Mathematics & Statistics, vol 387. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-98319-2_4
7. Roberts M. The Unreasonable Effectiveness of Quasirandom Sequences. 2020. URL: https://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
8. Halton J. H. On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals. Numer. Math. 1960. Vol. 2. P. 84–90. DOI: https://doi.org/10.1007/BF01386213
2. Шостак А. В. Про особливості формування дескрипторів у сіамській нейронній мережі. Системи управління, навігації та зв'язку. Полтава: НУ ПП, 2021. Вип. 4(66). С. 91–96. DOI: https://doi.org/10.26906/SUNZ.2021.4.079
3. Contrastive loss for Siamese networks with Keras and TensorFlow. URL: https://www.pyimagesearch.com/2021/01/18/contrastive-loss-for-siamese-networks-with-keras-and-tensorflow/
4. Image similarity estimation using a Siamese Network with a contrastive loss. URL: https://keras.io/examples/vision/siamese_contrastive/
5. The Mnist database of handwritten digits. URL: http://yann.lecun.com/exdb/mnist/
6. Owen, A.B. On Dropping the First Sobol’ Point. In: Keller, A. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2020. Springer Proc. in Mathematics & Statistics, vol 387. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-98319-2_4
7. Roberts M. The Unreasonable Effectiveness of Quasirandom Sequences. 2020. URL: https://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
8. Halton J. H. On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals. Numer. Math. 1960. Vol. 2. P. 84–90. DOI: https://doi.org/10.1007/BF01386213
Опубліковано
2024-09-06
Як цитувати
Shostak A. Про особливості формування вхідних даних у сіамській нейронній мережі / A. Shostak // Системи управління, навігації та зв’язку. Збірник наукових праць. – Полтава: ПНТУ, 2024. – Т. 3 (77). – С. 193-195. – doi:https://doi.org/10.26906/SUNZ.2024.3.193.
Розділ
Інформаційні технології
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.