IMPROVING THE EFFICIENCY OF COMPOSITE ELECTROMAGNETIC SCREENS BY THE ADJUSTMENT OF THE FERROMAGNETIC FILLER MORPHOLOGY

  • N. Kasatkina
  • O. Tykhenko
  • O. Panova
  • Y. Biruk
Keywords: electromagnetic screen, composite material, depolarization coefficient, Debye’s formula

Abstract

It is established that when designing composite metal-polymer electromagnetic screens it is necessary to take into account the morphology of the particles of the shielding substance - at least the ratio of the length and thickness of individual particles. It is determined that the sharp increase in the protective properties occurs at those concentrations of shielding elements, which provide their contact with each other (critical concentration). The highest critical concentration (up to 47%) corresponds to the ratio between the length and diameter of the particles of 1: 2. The critical concentration decreases monotonically with the increase of the ratio. When the ratio reaches 1:32, it is 15%. The incorrect results of calculating the dielectric constant of composite materials to determine the shielding coefficients, in particular the reflection coefficient of electromagnetic waves, are shown to be the product of the wrong calculation of depolarization coefficients, which are decisive for the determination of the critical volumetric concentrations of conductive substance in the composite matrix. In turn, the value of the critical concentration is included in the Odelevskiy's formula for calculating the dielectric constant of heterogeneous composite materials. The presented calculations on the influence of the shielding elements length to diameter ratio are applicable (prognosis of the functionality) for composites containing the same specially made shielding elements only. The calculation results for conditionally round (point) shielding particles do not coincide with reliable experimental data. For such filler the critical concentration (by weight) is 1215%. The prediction of the protective properties of composites containing fine substance (particle size below 150–200 μm) should be carried out on the basis of determining the electrophysical properties of the mixture. The adaptation of the Debye’s formula for the dielectric constant of the material is offered for such calculations

Downloads

Download data is not yet available.

References

1. Glyva V.A., Podoltsev A.D., Bolibrukh B.V., Radionov A.V. A Thin Electromagnetic Shield of a Composite Structure Made On the Basis of a Magnetic Fluid. Tekhnichna elektrodynamika. 2018. No 4. Р.14−18. DOI: https://doi.org/10.15407/techned2018.04.014
2. Glyva V., Podkopaev S., L. Levchenko, N. Karaieva, K. Nikolaiev, O. Tykhenko, O. Khodakovskyy, B. Khalmuradov. Design and study of protective properties of electromagnetic screens based on iron ore dust. Eastern-European Journal of Enterprise Technologies. 2018, Iss. 1/5 (91). PP. 10–17. DOI: https://doi.org/10.15587/1729-4061.2018.123622
3. Mondal S., Ganguly S., Das P., Khastgir D., Das N. C. Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites // Composites Part B: Engineering. 2017. Vol. 119. P. 41–56.
4. Sukach, S., Riznik, D., Zachepa, N., Chenchevoy, V. (2020). Normalization of the Magnetic Fields of Electrical Equipment in Case of Unauthorized Influence on Critical Information Infrastructure Facilities. Soft Target Protection, 337–349. DOI: https://doi.org/10.1007/978-94-024-1755-5_28.
5. Богуш В.А. Модифицирование водными растворами углеродосодержащих иглопробивных полотен для экранов электромагнитного излучения. Доклады БГУИР. 2016. No3 (97). С. 95-98.
6. Valentyn Glyva V., Kasatkina N., Nazarenko V., Burdeina N., Karaieva N., Levchenko L., Panova O., Tykhenko О., Khalmuradov В., Khodakovskyy О. Development and study of protective properties of the composite materials for shielding the electromagnetic fields of a wide frequency range. Eastern-European Journal of Enterprise Technologies. 2020, Iss. 12 (104). PP. 40–47. DOI: https://doi.org/10.15587/1729-4061.2020.201330
7. Агафонова А.С., Беляев А.А., Кондрашов Э.К., Романов А.М. Особенности формирования монолитных конструкционных радиопоглощающих материалов на основе композитов, наполненных резистивным волокном. Авиационные материалы и технологии. 2013. No3 (28). C. 56−59.
8. Краев И.Д., Образцова Е.П., Юрков Г.Ю. Влияние морфологии магнитного наполнителя на радиопоглощающие характеристики композиционных материалов. Авиационные материалы и технологии. 2014. NoS2. C. 10−14.
9. Беспалова Е.Е., Беляев А.А., Широков В.В. Радиопоглощающие материалы для СВЧ-излучения высокой мощности. Труды ВИАМ. 2015. No3. C. 43−49.
10. Drmota A., Koselj J., Drofenik M., Žnidaršič A. Electromagnetic wave absorption of polymeric nanocomposites based on ferrite with a spinel and hexagonal crystal structure. Journal of Magnetism and Magnetic Materials. 2012. 324(6). PP. 1225–1229. DOI: https://doi.org/10.1016/j.jmmm.2011.11.015.
11. Glyva V., Lyashok J., Matvieieva I., Frolov V., Levchenko L., Tykhenko O., Panova O., Khodakovskyy O., Khalmuradov B., Nikolaiev K. Development and investigation of protective properties of the electromagnetic and soundproofing screen. Eastern-European Journal of Enterprise Technologies. 2018. Iss. 6/5 (96). P. 54–61. DOI: https://doi.org/10.15587/1729-4061.2018.150778
12. Хмельник Г.И., Бибиков С.Б. Cтатистический анализ зависимости параметров распределения Дебая от удельных сопротивлений слоев многослойного РПП. Технологии электромагнитной совместимости. 2012. No 4(43). С. 45−51.
Published
2020-09-11
How to Cite
Kasatkina N. Improving the efficiency of composite electromagnetic screens by the adjustment of the ferromagnetic filler morphology / N. Kasatkina, O. Tykhenko, O. Panova, Y. Biruk // Control, Navigation and Communication Systems. Academic Journal. – Poltava: PNTU, 2020. – VOL. 3 (61). – PP. 115-118. – doi:https://doi.org/10.26906/SUNZ.2020.3.115.

Most read articles by the same author(s)

1 2 > >>