DECODING METHOD FOR MOSAIC STOCHASTIC AUGMENTED REALITY MARKER
DOI:
https://doi.org/10.26906/SUNZ.2019.6.054Keywords:
marker, code, augmented reality, virtual reality, models, methods, requirements, external influence, robustness, identification, decodingAbstract
The subject matter of the article is the augmented reality markers. The goal is to develop a method for decoding a mosaic stochastic augmented reality marker. The tasks are: analysis of basic operations in marker systems of augmented reality, analysis of the main existing types of AR-markers, development of a method for decoding a mosaic stochastic marker of augmented reality. The methods used are: methods of digital image processing, probability theory, mathematical statistics, cryptography and information protection, the mathematical apparatus of matrix theory. The following results are obtained. It is determined that one of the main operations in marker systems of augmented reality is the decoding of markers in a video stream in order to extract virtual objects from the real world. A method for decoding a mosaic stochastic augmented reality marker has been developed. Conclusions. For the first time, a decoding method for a mosaic stochastic augmented reality marker has been obtained. In which on the basis of the proposed system of indicators determines the size of the matrix of bits of the marker. From a transformed image of a bit container, it builds a matrix of marker bits. Defines the offset in the full matrix of bits. Based on the application of reverse permutation in the full matrix of bits, it implements filtering of a permuted image. The directions of further research are the development of a method for designing virtual objects on the plane of the augmented reality marker; development of information technology for using mosaic stochastic markers in augmented reality systemsDownloads
References
Facebook Research. AR/VR-Facebook Research. 2019 // [Electronic resource] – URL: https://research.fb.com/category/augmented-reality-virtual-reality.
Siltanen, Theory and applications of marker-based augmented reality / S.Siltanen // Espoo 2012 – 2012. – 198 p.
Маковейчук О. М. Новий тип маркерів доповненої реальності / О. М. Маковейчук // Сучасні інформаційні системи. — 2019. — Том. 3. – No 3. – С. 43–48.
Lowe, David G. Object recognition from local scale-invariant features. //Proceedings of the International Conference on Computer Vision 2 – 1999 – P. 1150–1157.
Форсайт А.Д., Компьютерное зрение. Современный подход / Форсайт А. Д., Понс Ж. // Компьютерное зрение. Современный подход. – 2004. – 928 с.
Hartley R., Multiple View Geometry in Computer Vision / Hartley R., Zisserman S. // Cambridge University Press New York, NY, USA – 2003. – 655 p.
Маковейчук О. М. Використання генетичних алгоритмів для знаходження інверсних псевдовипадкових блочних перестановок / О. М. Маковейчук, І. В. Рубан, Г. В. Худов // Системи управління, навігації та зв’язку. — 2019. — No 4 (56).
Adobe Blog. The 10 VR Trends We’ll See in 2018, 2019 // [Electronic resource] – URL: https://theblog.adobe.com/10-vrtrends-well-see-2018/.