Methodology and algorithm for assessing the impact of economic factors on the real estate market of Ukraine

Authors

DOI:

https://doi.org/10.26906/EiR.2023.2(89).3081

Keywords:

construction, factor analysis, forecasting, housing, modelling, real estate market

Abstract

The article is devoted to the analysis of methodology and the development of an algorithm for assessing the impact of economic factors on the real estate market of Ukraine. An analysis of economic factors affecting the real estate market of Ukraine is carried out, as a result of which a number of indicators that have a direct influence and shape the trends of the real estate market of Ukraine are singled out, namely: the index of rates for deposits of natural persons, the index of price changes in construction, the discount rate of the National Bank of Ukraine, average prices on the primary real estate market. Modern methods of forecasting the real estate market are summarized and characterized, including the following: methods using average characteristics (extrapolation based on the average level of the series, extrapolation on the average absolute growth, extrapolation on the average growth rate), mechanical methods (moving average method, weighted moving average method, exponential smoothing method, median smoothing), analytical methods (methods regression analysis – the method of sequential differences (Tintner), method of growth characteristics; adaptive methods – Brown, Brown-Mayer Holt, Holt-Winters model), software methods (within the Statgrafics, phyton, streamline, etc. software packages). It is argued that the key to successful forecasting is the development of an algorithm that systematizes approaches and forms a clear vision of the sequence of necessary stages and directly applied methods at each of them. Therefore, the algorithm for assessing the impact of economic factors on the real estate market of Ukraine has been developed, within which it is proposed to use a set of methods, including checking for abnormal values (Irvin’s method), checking time series for stationarity (Forster-Stewart method), identifying trends, and carrying out their correction, forecasting (Brown-Meier method) using Excel and Statgraphics software packages, checking the used methods for the relevance of the forecast in relation to already available data, assessing its realism and the possibility of using these forecasts in future transactions on the real estate market of Ukraine.

Author Biographies

Nazar Fenenko, Сумський державний університет

здобувач

Vitaliya Koibichuk, Сумський державний університет

кандидат економічних наук, доцент, завідувачка кафедрою економічної кібернетики

Nataliya Pedchenko, Полтавський університет економіки і торгівлі

доктор економічних наук, професор, перший проректор

References

Ahlefeldt-Dehn, B., Cajias, M. & Schäfers, W. Forecasting office rents with ensemble models – the case for European real estate markets. Journal of Property Investment and Finance. 2022. № 41 (2). Р. 182-207. DOI: https://doi.org/10.1108/JPIF-11-2021-0094

Chao, F.-C., Manaia, E.B., Ponchel, G., Hsieh, C.M. A physiologically-based pharmacokinetic model for predicting doxorubicin disposition in multiple tissue levels and quantitative toxicity assessment. Biomedicine & Pharmacotherapy. 2023. № 168. Аrt. no. 115636. DOI: https://doi.org/10.1016/j.biopha.2023.115636

Qiu, M.-J., Liu, B.-C., Yuan, F.-X., Liu, Y., Zhang, Y.-Y., Wu X.-Y., Xiao, N.-S. Determination Methods of Weight Coefficient in Spring Maize Yield Prediction Based on Climatic Suitability Index. Chinese Journal of Agrometeorology. 2018. № 39 (10). Р. 664-673. DOI: https://doi.org/10.3390/su10030804

Milanez, D.H., Amaral, R.M., Faria, L.I., & Gregolin, J.A. Assessing nanocellulose developments using science and technology indicators. Materials Research-Ibero-American Journal of Materials. 2013. № 16(3). Р. 635-641. DOI: https://doi.org/10.1590/S1516-14392013005000033

Li, Y., Chan, C. K., Yau, C. Y., Ng, W. L., Lam, H. Burn-in selection in simulating stationary time series. Computational Statistics and Data Analysis. 2023. № 192. Аrt. no. 107886. DOI: https://doi.org/10.1016/j.csda.2023.107886

Wu, H., Wang, C., Jian, Z., Lai, Y., Song, L., Yang, F. Nearest Memory Augmented Feature Reconstruction for Unified Anomaly Detection / Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds). Neural Information Processing. ICONIP-2023. Communications in Computer and Information Science. Vol 1966. Singapore: Springer, 2023. Р. 350-361. DOI: https://doi.org/10.1007/978-981-99-8148-9_28

Ahmadi, A., Daccache, A., Sadegh, M., Snyder, R.L. Statistical and deep learning models for reference evapotranspiration time series forecasting: A comparison of accuracy, complexity, and data efficiency. Computers and Electronics in Agriculture. 2023. № 215. Аrt. no. 108424. DOI: https://doi.org/10.1016/j.compag.2023.108424

Phumchusri, N., Suwatanapongched, P. Forecasting hotel daily room demand with transformed data using time series methods. J Revenue Pricing Manag. 2023. № 22. Р. 44-56. DOI: https://doi.org/10.1057/s41272-021-00363-6

Baltagi, B.H., Hong, Y., Koop, G., Krämer, W., Mátyás, L. The Basic Statistics. Advanced Studies in Theoretical and Applied Econometrics. 2009. № 44. Р. 123-149. DOI: https://doi.org/10.1007/978-3-540-75571-5_5

Kasianenko, V., Kasianenko, T. and Kasaeva, J. Investment potential forecast and strategies for its expansion: case of Ukraine. Investment Management and Financial Innovations. 2020. № 17(1). Р. 329-347. DOI: https://doi.org/10.21511/imfi.17(1).2020.28

Xu, B., Zhu, Z., Qiu, X., Zeyuan Chen, S.W., Zhang, H., Lu, J. Real measurement data-driven correlated hysteresis monitoring model for concrete arch dam displacement. Expert Systems with Applications. 2023. № 238. Рart A. Аrt. no. 121752. DOI: https://doi.org/10.1016/j.eswa.2023.121752

Statgraphics. Statistics library. URL: https://www.statgraphics.com/statistics-library

Streamline. Streamline One. URL: https://www.streamlinevrs.com/streamline-one/

Український індекс ставок за депозитами фізичних осіб (% річних). Правексбанк. URL: https://www.pravex.com.ua/storage/files/stavki-uird.pdf

Зміни цін у будівництві. Держстат. URL: https://stat.gov.ua/uk/datasets/zminy-tsin-u-budivnytstvi-0

Облікова ставка Національного банку. Національний Банк України. URL: https://bank.gov.ua/ua/monetary/archive-rish

Статистика первинки, вторинки та оренди. Лун статистика. URL: https://misto.lun.ua/stat/kyiv#life-quality

Іпотечні кредити: вторинний ринок. KredoBank. URL: https://kredobank.com.ua/private/credits/ipotechni-kredyty/vtorynnyi-rynok

Guijarati, D. Basic Econometrics. Fourth edition. New York: The McGraw-Hill Companies, 2003. 1027 p.

Zhou, J.-J. The application of grey forecasting model based on excel modelling and solving in logistics demand forecast. Proceedings of 10th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP 2013). 2013. Art. no. 6716667. P. 362-365. DOI: https://doi.org/10.1109/ICCWAMTIP.2013.6716667

Published

2023-07-30

How to Cite

Fenenko, N., Koibichuk, V., & Pedchenko, N. (2023). Methodology and algorithm for assessing the impact of economic factors on the real estate market of Ukraine. Economics and Region, (2(89), 136–142. https://doi.org/10.26906/EiR.2023.2(89).3081

Issue

Section

Mathematical methods, models and information technologies in economics