Elucidation of the technological conditions for the formation of alkali silicates heat-insulating products based on ash-removal of thermal power plants and liquid glass

Authors

DOI:

https://doi.org/10.26906/znp.2024.62.3860

Keywords:

neodymium, cesium, strontium, nitrates, water-salt systems, complex formation, properties

Abstract

The carried out complex study gives a reliable idea of the trends in the joint behavior of structural components in water-salt systems of nitrate precursors of neodymium, cesium, strontium in the preparatory stages of technological regulations for both concentration and immobilization of liquid radioactive waste of the nuclear energy industrial complex 137Cs, 90Sr and thermal activation. The stages of such transformations have been revealed; the patterns of complex and phase formation in systems and the factors influencing them have been clarified. It has been studied a number of physicochemical properties of the resulting intermediate phases (coordination neodymium nitrates: their composition, types of compounds, atomic crystal structure, shapes of Ln coordination polyhedra, types of ligand coordination, features and patterns of behavior in heat treatment processes. It has been established that, under the conditions of the existence of solutions, the system CsNO3 – Nd(NO3)3 – H2O is characterized by the formation of 2 anionic complex compounds Ln3+, the system Sr(NO3)2 – Nd(NO3)3 – H2O – is of the eutonic type. The ongoing competing reactions are a powerful technological factor that has a significant impact on changes in the activity of structural forms of Ln3+. Systematized information enables to elucidate the mechanisms and kinetics of transformations of structural components in similar objects. Also, it enables to transfer the resulting system of knowledge to the promising technological solutions for the solidification of liquid radioactive wastes

References

1. Salvatores, M. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges / M. Salvatores, G. Palmiotti // Prog. Part. Nucl. Phys. – 2011. – V. 66, No.1. – P. 144–166. DOI: https://doi.org/10.1016/j.ppnp.2010.10.001

2. Zilberman, B.Ya. Dibutyl phosphoric acid and its acidic zirconium salt as an extractant for the separation of transplutonium elements and rare earths and for their partitioning / B. Ya. Zilberman, Yu. S. Fedorov, O. V. Schmidt [et al.] // J. Radioanal. Nucl. Ch. – 2009. – V. 279, No. 1. – P. 193–208. DOI: https://doi.org/10.1007/s10967-007-7253-5

3. Nishihara, K. Impact of partitioning and transmutation on LWR high-level waste disposal / K. Nishihara, S. Nakayama, Y. Morita [et al.] // J. Nucl. Sci. Technol. – 2008. – V. 45, No. 1. – P. 84–97. DOI: https://doi.org/10.3327/jnst.45.84

4. Forsberg, C. W. Rethinking high-level waste disposal: Separate disposal of high-heat radionuclides / C. W. Forsberg // Nucl. Technol. – 2000. – V. 131, No. 2. – P. 252–268. DOI: https://doi.org/10.13182/NT00-A3115

5. Del Cul, G. D. Citrate-based ―talspeak‖ actinide-lanthanide process / G. D. Del Cul, L.M. Toth, W. D. Bond [et al.] // Separ. Sci. Technol. – 1997. – V. 32, No. 1–4. – P. 431– 446. DOI: https://doi.org/10.1080/01496399708003208

6. Mathur, J. M. Actinides partitioning – a review / J. M. Mathur, M. S. Murali, K. L. Nash // Solvent Extr. Ion Exc. – 2001. – V. 19, No. 3. – P. 357–390. DOI: https://doi.org/10.1081/SEI-100103276

7. Paiva, A. P. Recent advances on the chemistry of solvent extraction applied to the reprocessing of spent nuclear fuels and radioactive wastes / A. P. Paiva, P. Malik // J. Radioanal. Nucl. Ch. – 2004. – V. 261, No. 2. – P. 485–496. DOI: https://doi.org/10.1023/B:JRNC.0000034890.23325.b5

8. Trachenko, K. Topical Review. Understanding resistance to amorphization by radiation damage / K. Trachenko // J. Phys.- Condens. Mat. – 2004. – V. 16. – P. 1491–1515. DOI: https://doi.org/10.1088/0953-8984/16/49/R03

9. Anosov V.Ya. Basics of Physical and Chemical Analysis / V.Ya. Anosov, М.I. Ozerova, Yu.Ya .Fialkov., 1976. – 503 p.

10. Goroshchenko Ya. G. Physical and Chemical Analysis of homogenous and heterogenous systems / Ya. G. Goroshchenko. –K.: Naukova dumka, 1978. – 490 p.

11. Vigdorchik A.G., Malinovskij Ju.A., Drjuchko A.G. Preparation and crystalline structure of Cs2[Nd(NO3)5(H2O)2]. Crystallography. 1989. vol. 34, no. 2. pp. 292-296.

12. Vigdorchik A.G., Malinovskij Ju.A., Drjuchko A.G. Preparation and crystalline structure of Cs[Nd(NO3)4(H2O)3]. Journal of structural chemistry. 1989. vol. 30, no. 5. pp. 175-179.

13. Kudrenko E.O., Shmyt'ko Y.M., Strukova H.K. Structure of precursors of complex oxides of rare-earth elements prepared by solvent thermolysis. Fyzyka tverdoho tela. 2008, vol. 50, no. 5, pp. 924–930. DOI: https://doi.org/10.1134/S1063783408050272

14. Varma A., Mukasyan A.S., Rogachev A.S. et al. Solution Combustion Synthesis of Nanoscale Materials. American Chemical Society. Chem. Rev. 2016, vol. 116, pp. 14493-14586. DOI: https://doi.org/10.1021/acs.chemrev.6b00279

15. Schaak R.E., Mallouk T.E. Perovskites by Design: A Toolbox of Solid-State Reactions. Chemistry of Materials. 2002, vol. 14, no. 4, pp. 1455-1471. DOI: https://doi.org/10.1021/cm010689m

Downloads

Published

2024-06-19

How to Cite

Dryuchko О., Bunyakina , N., Shefer О., Zakharchenko, R., Kyslytsia, D., & Moskalenko, M. (2024). Elucidation of the technological conditions for the formation of alkali silicates heat-insulating products based on ash-removal of thermal power plants and liquid glass . Academic Journal Industrial Machine Building Civil Engineering, 1(62), 69–78. https://doi.org/10.26906/znp.2024.62.3860
Received 2025-07-24
Published 2024-06-19

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.