МОБІЛЬНІ ЛОГІСТИЧНІ ТА МОНІТОРИНГОВІ СИСТЕМИ НА БАЗІ РОЇВ БПЛА: ВИКЛИКИ ТА НАПРЯМИ РОЗВИТКУ

Автор(и)

  • O. Kriuchenkov
  • O. Morozova
  • T. Nikitina

DOI:

https://doi.org/10.26906/SUNZ.2024.4.096

Ключові слова:

рої БПЛА, мобільні логістичні системи, безпілотні літальні апарати, ефективність логістики, автономні системи управління, цифровізація логістики, обробка великих даних, безпека даних, стандартизація, відмовостійкість, оптимізація маршрутів

Анотація

Із розвитком технологій і активною цифровізацією аспектів життя від транспорту до торгівлі, зростає потреба у створенні надійних мобільних логістичних систем на базі роїв безпілотних літальних апаратів (БПЛА). Застосування роїв БПЛА здатне суттєво підвищити ефективність логістичних і моніторингових операцій, забезпечуючи безпеку та оптимізуючи витрати завдяки збору та аналізу даних для прийняття рішень у реальному часі. Основною метою цієї статті є огляд методів і програмних засобів, що забезпечують надійну роботу мобільних логістичних і моніторингових систем на базі роїв БПЛА. Також розглядаються ключові сфери діяльності з прикладами їх застосування, характерними рисами, проблемами, обмеженнями та перевагами. Стаття також формулює загальні виклики та обмеження у цій галузі. У роботі пропонується концепція використання роїв БПЛА для вирішення логістичних та моніторингових завдань, що підвищують ефективність роботи та знижують ризик виникнення непередбачених ситуацій протягом життєвого циклу операцій. Виділяються три основні підходи до реалізації таких систем: автономні рої БПЛА, рої, керовані оператором, і гібридні системи. Крім того, розглядається застосування роїв БПЛА у різних сферах діяльності, таких як доставка товарів, моніторинг складів та інфраструктури, а також підтримка пошуково-рятувальних операцій. Концепція мобільних логістичних і моніторингових систем на базі роїв БПЛА може бути впроваджена майже у всіх галузях, але ця стаття зосереджена на найпоширеніших сферах, що суттєво вплинули на розвиток таких систем. Проведено аналіз основних галузей застосування роїв БПЛА, визначено особливості та проблеми їх використання у кожній із розглянутих сфер діяльності. Було узагальнено виклики, переваги та специфіку використання роїв БПЛА.

Завантаження

Дані завантаження ще не доступні.

Посилання

Joonyup Eun, Byung Duk Song, Songbook Lee and Dae-Eun Lim, Mathematical Investigation on the Sustainability of UAV Logistics. Sustainability 2019, 11(21), 5932; https://doi.org/10.3390/su11215932

Yi Li, Min Liu and Dandan Jiang, Application of Unmanned Aerial Vehicles in Logistics: A Literature Review. Sustainability 2022, 14(21), 14473; https://doi.org/10.3390/su142114473

Hanxue Li, Shuaiqi Zhu, Amr Tolba, Ziyi Liu and Wu Wen, A Reliable Delivery Logistics System Based on the Collaboration of UAVs and Vehicles. Sustainability 2023, 15(17), 12720; https://doi.org/10.3390/su151712720

Shan Li, Honghai Zhang, Zhuolun Li and Hao Liu, An Air Route Network Planning Model of Logistics UAV Terminal Distribution in Urban Low Altitude Airspace. Sustainability 2021, 13(23), 13079; https://doi.org/10.3390/su132313079

Chommaphat Malang ,Phasit Charoenkwan, and Ratapol Wudhikarn, Implementation and Critical Factors of Unmanned Aerial https://doi.org/10.3390/drones7020080

Minyi Deng, Qingqing Yang and Yi Peng, A Real-Time Path Planning Method for Urban Low-Altitude Logistics UAVs. Sensors 2023, 23(17), 7472; https://doi.org/10.3390/s23177472

Muhammad Yeasir Arafat, Md Arafat Habib and Sangman Moh, Routing Protocols for UAV-Aided Wireless Sensor Networks. Appl. Sci. 2020, 10(12), 4077; https://doi.org/10.3390/app10124077

Saif Ullah, Khalid Hussain Mohammadani, Muhammad Asghar Khan, Zhi Ren, Reem Alkanhel, Ammar Muthanna and Usman Tariq, Position-Monitoring-Based Hybrid Routing Protocol for 3D UAV-Based Networks. Drones 2022, 6(11), 327;https://doi.org/10.3390/drones6110327

Ghulam E. Mustafa Abro, Saiful Azrin B. M. Zulkifli, Rana Javed Masood, Vijanth Sagayan Asirvadam and Anis Laouiti, Comprehensive Review of UAV Detection, Security, and Communication Advancements to Prevent Threats. Drones 2022, 6(10), 284; https://doi.org/10.3390/drones6100284

Asmaa Abdallah, M. Zulfiker Ali, Jelena Mišić and Vojislav B. Mišić, Efficient Security Scheme for Disaster Surveillance UAV Communication Networks. Information 2019, 10(2), 43; https://doi.org/10.3390/info10020043

Marlena Robakowska, Daniel Ślęzak, Przemysław Żuratyński, Anna Tyrańska-Fobke, Piotr Robakowski, Paweł Prędkiewicz and Katarzyna Zorena, Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies. Int. J. Environ. Res. Public Health 2022, 19(17), 10754; https://doi.org/10.3390/ijerph191710754

Khalifa AL-Dosari and Noora Fetais, A New Shift in Implementing Unmanned Aerial Vehicles (UAVs) in the Safety and Security of Smart Cities: A Systematic Literature Review. Safety 2023, 9(3), 64; https://doi.org/10.3390/safety9030064

Wedad Alawad, Nadhir Ben Halima and Layla Aziz, An Unmanned Aerial Vehicle (UAV) System for Disaster and Crisis Management in Smart Cities. Electronics 2023, 12(4), 1051; https://doi.org/10.3390/electronics12041051

Nadir Abbas, Zeshan Abbas, Xiaodong Liu, Saad Saleem Khan, Eric Deale Foster and Stephen Larkin, A Survey: Future Smart Cities Based on Advance Control of Unmanned Aerial Vehicles (UAVs). Appl. Sci. 2023, 13(17), 9881; https://doi.org/10.3390/app13179881

Vyacheslav Kharchenko, Ihor Kliushnikov, Andrzej Rucinski, Herman Fesenko and Oleg Illiashenko, UAV Fleet as a Dependable Service for Smart Cities: Model-Based Assessment and Application. Smart Cities 2022, 5(3), 1151-1178; https://doi.org/10.3390/smartcities5030058

Adiel Ismail, Bigomokero Antoine Bagula and Emmanuel Tuyishimire, Internet-Of-Things in Motion: A UAV Coalition Model for Remote Sensing in Smart Cities. Sensors 2018, 18(7), 2184; https://doi.org/10.3390/s18072184

Enrico Petritoli, Fabio Leccese, and Lorenzo Ciani,Reliability and Maintenance Analysis of Unmanned Aerial Vehicles. Sensors 2018, 18(9), 3171; https://doi.org/10.3390/s18093171

Krzysztof Andrzej Gromada and Wojciech Marcin Stecz, Designing a Reliable UAV Architecture Operating in a Real Environment. Appl. Sci. 2022, 12(1), 294; https://doi.org/10.3390/app12010294

Ning Ning, Suiping Zhou, Weimin Bao and Xiaoping Li, A Study on the Maximum Reliability of Multi-UAV Cooperation Relay Systems. Sensors 2024, 24(9), 2886; https://doi.org/10.3390/s24092886

Taha Elmokadem and Andrey V. Savkin, Towards Fully Autonomous UAVs: A Survey. Sensors 2021, 21(18), 6223; https://doi.org/10.3390/s21186223

Nurul I. Sarkar, and Sonia Gul, Artificial Intelligence-Based Autonomous UAV Networks: A Survey. Drones 2023, 7(5), 322; https://doi.org/10.3390/drones7050322

Victor M. Becerra, Autonomous Control of Unmanned Aerial Vehicles. Electronics 2019, 8(4), 452; https://doi.org/10.3390/electronics8040452

Krzysztof Mateja, Wojciech Skarka, Magdalena Peciak, Roman Niestrój and Maik Gude, Energy Autonomy Simulation Model of Solar Powered UAV. Energies 2023, 16(1), 479; https://doi.org/10.3390/en16010479

Paula Fraga-Lamas, Lucía Ramos, Víctor Mondéjar-Guerra and Tiago M. Fernández-Caramés, A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection and Collision Avoidance. Remote Sens. 2019, 11(18), 2144; https://doi.org/10.3390/rs11182144

Yassine Yazid, Imad Ez-Zazi, Antonio Guerrero-González, Ahmed El Oualkadi and Mounir Arioua, UAV-Enabled Mobile Edge-Computing for IoT Based on AI: A Comprehensive Review. Drones 2021, 5(4), 148; https://doi.org/10.3390/drones5040148

Anis Koubaa, Adel Ammar, Mohamed Abdelkader, Yasser Alhabashi and Lahouari Ghouti, AERO: AI-Enabled Remote Sensing Observation with Onboard Edge Computing in UAV. Remote Sens. 2023, 15(7), 1873; https://doi.org/10.3390/rs15071873

Petros S. Bithas, Emmanouel T. Michailidis, Nikolaos Nomikos, Demosthenes Vouyioukas and Athanasios G. Kanatas, A Survey on Machine-Learning Techniques for UAV-Based Communications. Sensors 2019, 19(23), 5170; https://doi.org/10.3390/s19235170

Roghieh Eskandari, Masoud Mahdianpari, Fariba Mohammadimanesh, Bahram Salehi, Brian Brisco and Saeid Homayouni, Meta-analysis of Unmanned Aerial Vehicle (UAV) Imagery for Agro-environmental Monitoring Using Machine Learning and Statistical Models. Remote Sens. 2020, 12(21), 3511; https://doi.org/10.3390/rs12213511

Vittorio Mazzia, Lorenzo Comba, Aleem Khaliq, Marcello Chiaberge and Paolo Gay, UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.Sensors 2020, 20(9), 2530; https://doi.org/10.3390/s20092530

Chamali Sandamini, Madduma Wellalage Pasan Maduranga, Valmik Tilwari, Jamaiah Yahaya, Faizan Qamar, Quang Ngoc Learning Algorithms. Electronics 2023, 12(7), 1533; https://doi.org/10.3390/electronics12071533

Geun-Ho Kwak and No-Wook Park, Impact of Texture Information on Crop Classification with Machine Learning and UAV Images. Appl. Sci. 2019, 9(4), 643; https://doi.org/10.3390/app9040643

Hisham Khalil, Saeed Ur Rahman, Inam Ullah, Inayat Khan, Abdulaziz Jarallah Alghadhban, Mosleh Hmoud Al-Adhaileh, Gauhar Ali and Mohammed ElAffendi, A UAV-Swarm-Communication Model Using a Machine-Learning Approach for Search-and-Rescue Applications. Drones 2022, 6(12), 372; https://doi.org/10.3390/drones6120372

Daniel H. Stolfi and Grégoire Danoy, An Evolutionary Algorithm to Optimise a Distributed UAV Swarm Formation System. Appl. Sci. 2022, 12(20), 10218; https://doi.org/10.3390/app122010218

Ángel Madridano, Abdulla Al-Kaff, David Martín and Arturo de la Escalera, 3D Trajectory Planning Method for UAVs Swarm in Building Emergencies. Sensors 2020, 20(3), 642; https://doi.org/10.3390/s20030642

Abhishek Phadke and F. Antonio Medrano, Towards Resilient UAV Swarms—A Breakdown of Resiliency Requirements in UAV Swarms. Drones 2022, 6(11), 340; https://doi.org/10.3390/drones6110340

Rui Ming, Rui Jiang, Haibo Luo, Taotao Lai, Ente Guo and Zhiyan Zhou, Comparative Analysis of Different UAV Swarm Control Methods on Unmanned Farms. Agronomy 2023, 13(10), 2499; https://doi.org/10.3390/agronomy13102499

Xudong Deng, Mingke Guan, Yunfeng Ma, Xijie Yang and Ting Xiang, Vehicle-Assisted UAV Delivery Scheme Considering Energy Consumption for Instant Delivery. Sensors 2022, 22(5), 2045; https://doi.org/10.3390/s22052045

Jianxun Li, Hao Liu, Kin Keung Lai and Bhagwat Ram, Vehicle and UAV Collaborative Delivery Path Optimization Model. Mathematics 2022, 10(20), 3744; https://doi.org/10.3390/math10203744

Young Kwan Ko, Ju Hyeong Park and Young Dae Ko, A Development of Optimal Algorithm for Integrated Operation of UGVs and UAVs for Goods Delivery at Tourist Destinations. Appl. Sci. 2022, 12(20), 10396; https://doi.org/10.3390/app122010396

Fang Li and Oliver Kunze, A Comparative Review of Air Drones (UAVs) and Delivery Bots (SUGVs) for Automated Last Mile Home Delivery. Logistics 2023, 7(2), 21; https://doi.org/10.3390/logistics7020021

Emanuel Jesús Ulin Hernández, Jania Astrid Saucedo Martínez and José Antonio Marmolejo Saucedo, Optimization of the Distribution Network Using an Emerging Technology. Appl. Sci. 2020, 10(3), 857; https://doi.org/10.3390/app10030857

Diyar Altinses, David Orlando Salazar Torres, Michael Schwung, Stefan Lier and Andreas Schwung, Optimizing Drone Logistics: A Scoring Algorithm for Enhanced Decision Making across Diverse Domains in Drone Airlines. Drones 2024, 8(7), 307; https://doi.org/10.3390/drones8070307

DroneARchery: Human-Drone Interaction through Augmented Reality with Haptic Feedback and Multi-UAV Collision Avoidance Driven by Deep Reinforcement Learning, available at: https://ar5iv.labs.arxiv.org/html/2210.07730 (accessed August, 2024).

Ihor Kliushnikov, Vyacheslav Kharchenko, Herman Fesenko, Multi-UAV Routing for Critical Iinfrastructure Monitoring Considering Failures of UAVs: Reliability Models, Rerouting Algorithms, Industrial Case, available at: https://www.researchgate.net/profile/Elena-Zaitseva-2/publication/353590931_MultiUAV_Routing_for_Critical_Iinfrastructure_Monitoring_Considering_Failures_of_UAVs_Reliability_Models_Rerouting_Al gorithms_Industrial_Case/links/61124f10169a1a0103ee1d92/Multi-UAV-Routing-for-Critical-Iinfrastructure-MonitoringConsidering-Failures-of-UAVs-Reliability-Models-Rerouting-Algorithms-Industrial-Case.pdf (accessed August, 2024).

Herman Fesenko, Oleg Illiashenko, Vyacheslav Kharchenko, Ihor Kliushnikov, Olga Morozova, Anatoliy Sachenko and Stanislav Skorobohatko, Flying Sensor and Edge Network-Based Advanced Air Mobility Systems: Reliability Analysis and Applications for Urban Monitoring. Drones 2023, 7(7), 409; https://doi.org/10.3390/drones7070409

Yun Sun, Herman Fesenko, Vyacheslav Kharchenko, Luo Zhong, Ihor Kliushnikov, Oleg Illiashenko, Olga Morozova and Anatoliy Sachenko, UAV and IoT-Based Systems for the Monitoring of Industrial Facilities Using Digital Twins: Methodology, Reliability Models, and Application. Sensors 2022, 22(17), 6444; https://doi.org/10.3390/s22176444

Downloads

Опубліковано

2024-11-28

Номер

Розділ

Інформаційні технології