ВИВІЛЬНЕННЯ АВТОНОМНИХ СИЛ: ІНТЕГРАЦІЯ БЕЗПІЛОТНИХ ЛІТАЛЬНИХ АПАРАТІВ ІЗ ШТУЧНИМ ІНТЕЛЕКТОМ У СУЧАСНУ ВІЙСЬКОВУ СТРАТЕГІЮ
Ключові слова:
БПЛА, YOLOv8, дрон, ГІС, штучний інтелект, безпека, C5IRS
Анотація
Вплив штучного інтелекту (ШІ) на міжнародну безпеку на сьогодні є безсумнівним, оскільки тепер машини здатні виконувати завдання, які традиційно покладені на людський інтелект. Ця зміна породжує безліч викликів у міжнародній безпеці, впливаючи як на звичайні військові можливості, так і на гібридні загрози. Водночас ШІ відкриває нові можливості для вирішення цих викликів, впливаючи на ключові аспекти колективної оборони, кооперативних систем безпеки та управління кризами. Враховуючи його глибокі наслідки для процвітання та безпеки, ефективне управління ШІ вимагає спільних зусиль. Обсяг перспектив і небезпек, пов’язаних зі штучним інтелектом, величезний, що вимагає колективних дій для пом’якшення ризиків безпеці та використання його потенціалу для реструктуризації операційних процесів, підтримки місій і оптимізації операцій. Ця стаття в основному зосереджена на представленні дронів, оснащених штучним інтелектом і можливостями автономного навчання, досліджуючи їх застосування у військових умовах. У статті розглядається потенціал незалежного використання безпілотних літальних апаратів із штучним інтелектом як у бойових, так і в небойових армійських операціях. Завдяки використанню ГІС, C5IRS (командування, управління, комп’ютери, зв’язок, кіберзахист, розвідка, спостереження та розвідка) і штучного інтелекту ці дрони забезпечують значну перевагу на полі бою, працюючи автономно та адаптуючись до динамічних наземних ситуацій. У бойовому просторі, де поєднання людських, інформаційних і фізичних компонентів має вирішальне значення для стратегічної переваги, оперативна сумісність стає життєво важливим фактором.Завантаження
Дані про завантаження поки що недоступні.
Посилання
1. Petrovski, A., Radovanović, M., Behlić, A. and Ackovska, S. Advantages of Implementation of C6ISR in Low Budget Armies. In: Int. Scientific Conference GEOBALCANICA 2023, 2023, pp. 47-60. https://doi.org/10.18509/GBP23047p
2. Bayramov, A.A., Hashimov, E.G., and Amanov, R.R. Identification of invisible objects using GIS technology. In: Proceedings of the Azerbaijan Geographical Society Geography and Natural Resources, 2016, pp. 124-126.
3. Bares, M. Interoperability Modeling of the C4ISR Systems. In: RTO SCI Symposium on “System Concepts for Integrated Air Defense of Multinational Mobile Crisis Reaction Forces”, Valencia, Spain, 2021, pp. 16-1 – 16-16.
4. Petrovski, A. & Toshevski, M. GIS in Army: Application of GIS in Geo-Reconnaissance and C4IS in Army Purposes. In: 2 nd International Scientific Conference GEOBALCANICA, 2016, pp. 153-160.
5. Jović, Ž. Combat engagement of drones in USA counterterrorist operations. Bezbednost, 2016, 58(3), pp. 171-190.
6. Petrovski, A., Taneski, N. and Bogatinov, D. Geography in Geospatial Intelligence - C4IRS and Cyber Security. In: 5 th Int. Scientific conference Safety and crisis management – Theory and practise Safety for the future – SecMan 2019, pp. 64-72.
7. Milić, A., Ranđelović, A. and Radovanović, M. Use of drones in operations in the urban environment. 5 th International Scientific conference Safety and crisis management – Theory and practise Safety for the future – SecMan 2019, 2019, pp.\ 124-130.
8. Adamski, M. Effectiveness analysis of UCAV used in modern military conflicts. Aviation, 2020, 24(2), 66-71. https://doi.org/10.3846/aviation.2020.12144
9. Žnidaršič, V., Radovanović, M. and Stevanović, D. Modeling the organisational implementation of a drone and counterdrone operator into the Serbian Armed Forces rifle section. Vojno delo, 2020, 72(3), pp. 84-109. https://doi.org/10.5937/vojdelo2003084Z
10. Petrovski, A. And Radovanović, M. (2021). Application of detection reconnaissance technologies use by drones in collaboration with C4IRS for military interested. Contemporary Macedonian Defence, 2021, 21(40), pp. 117-126.
11. Hashimov, E.G. and Huseynov, B.S. Some aspects of the combat capabilities and application of modern UAVs. National security and military sciences, 2021, 3(7), pp. 14-24.
12. Radovanović, M., Petrovski, A., Žindrašič, V., and Ranđelović, A. Application of the fuzzy AHP -VIKOR hybrid model in the selection of an unmanned aircraft for the needs of tactical units of the armed forces. Scientific Technical Review, 2021, 71(2), 26-35. https://doi.org/10.5937/str2102026R
13. Ilić, D. and Tomašević, V. The impact of the Nagorno-Karabakh conflict in 2020 on the perception of combat drones. Serbian Journal of Engineering Management, 2021, 6(1), pp. 9-21. https://doi.org/10.5937/SJEM2101009I
14. Radovanović, M., Samopjan, M. and Petrovski, A. Possibility of Implementation of Drons in Mortar Units in Order to Increase the Efficiency of Fire Support Units. In: 24. Međunarodna DQM konferencija Upravljanje kvalitetom i pouzdanošću ICDQM -2021, 2021, pp. 307–315.
15. Ciolponea, C.A. The Integration of Unmanned Aircraft System (UAS) in Current Combat Operations. Land Forces Academy Review, 2022, 27(4), pp. 333–47.
16. Szulc, T. Possibilities of using unmanned combat assets in tactical operations in the mountains. Scientific Journal of the Military University of Land Forces, 2023, 208(2), pp. 112-127. https://doi.org/10.5604/01.3001.0053.7270
17. Zaher, R. A. H. Drones and their Role in the Evolution of Generations of War. The International and Political Journal, 2023, 56(Sep. 2023), pp. 69–86. https://doi.org/10.31272/ipj.i56.246
18. Hashimov, E.G., Bayramov, A.A., and Khalilov, B.M. Orthophotomap making of terrain for detection military targets. National security and military sciences, 2016, 4(2), pp. 14-20.
19. Li, S., Huang, H., Meng, X., Wang, M., Li, Y. and Xie L. A Glove-Wearing Detection Algorithm Based on Improved YOLOv8. Sensors, 2023, 23(24):9906. https://doi.org/10.3390/s23249906
20. Roy A. M., Bhaduri, J. DenseSPH-YOLOv5: An automated damage detection model based on DenseNet and SwinTransformer prediction head-enabled YOLOv5 with attention mechanism. Advanced Engineering Informatics, 2023, 56(12), 102007, https://doi.org/10.1016/j.aei.2023.102007
21. Duan, J., Bai, T., Lv, B., Zong, H. and Fu, H. (2024). Lightweight Detection of Fasteners with YOLOv8 Combined with ShuffleNetV2. In: Proceedings of the 6th Int. Conf. on Electrical Eng. and Information Techn. for Rail Transp. (EITRT 2023). Lecture Notes in Electrical Engineering, 2024, 1136, pp. 480-489, https://doi.org/10.1007/978-981-99-9315-4_46
22. Wang, H., Han, X., Song, X., Su J., Li Y., Zheng W. and Wu X. Research on automatic pavement crack identification Based on improved YOLOv8. Int. J. on Int. Design and Manufacturing, 2024, 18(2), https://doi.org/10.1007/s12008-024-01769-3
23. Sun, D., Zhang, K., Zhong, H., Xie J., Xue X., Yan, M., Wu, W. and Li, J. Efficient Tobacco Pest Detection in Complex Environments Using an Enhanced YOLOv8 Model. Agriculture, 2024, 14(3):353. https://doi.org/10.3390/agriculture14030353
24. Wu, Y., Liao, T., Chen, F., Zeng, H., Ouyang, S. and Guan, J. Overhead Power Line Damage Detection: An Innovative Approach Using Enhanced YOLOv8. Electronics, 2024, 13(4):739. https://doi.org/10.3390/electronics13040739
25. Wen, G., Li, M., Luo, Y., Shi, C. & Tan, Y. The improved YOLOv8 algorithm based on EMSPConv and SPE-head modules, 2024.
26. Niu, S., Xu, X., Liang, A., Yun, Y., Li, L., Hao, F., Bai, J. and Ma, D. Research on a Lightweight Method for Maize Seed Quality Detection Based on Improved YOLOv8. IEEE Access, 2024, 12, pp. 32927-32937, https://doi.org/10.1109/ACCESS.2024.3365559
27. Fazekas, F. Application of Artificial Intelligence in Military Operations Planning. AARMS – Academic and Applied Research in Military and Public Management Science, 2022, 21(2), pp. 41–54. https://doi.org/10.32565/aarms.2022.2.
28. Kania, E. B. (2019). Chinese Military Innovation in the AI Revolution. The RUSI Journal, 2019, 164(5–6), pp. 26–34. https://doi.org/10.1080/03071847.2019.1693803
29. Forrest E.M, Boudreaux, B., Lohn, J.A., Ashby, M., Curriden, C., Klima, K. and Grossman, D. Military Applications of Artificial Intelligence: Ethical Concerns in an Uncertain World. Santa Monica, CA: RAND Corporation, 2020. https://www.rand.org/pubs/research_reports/RR3139-1.html
30. Walsh, G., Andersen, N., Stoianov, N. and Jänicke, S. A Survey of Geospatial-Temporal Visualizations for Military Operations. In: Proceedings of the 18th Interna-tional Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) – IVAPP, 2023, pp. 115-129. https://doi.org/10.5220/0011902500003417
31. Bhagat R. S. Artificial Intelligence and Data Applications In Military Opera-tions. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), 2023, 3(1), pp. 264-271, https://doi.org/10.48175/IJARSCT-12040
32. De Castro, B.A., Pochmann, P.G.C. and Neves, E.B. (2024). Artificial Intelligence Applica-tions in Military Logistics Operations. In: Developments and Advances in Defense and Security. MICRADS 2023. Smart Innovation, Systems and Technologies, 2024, 380, pp. 89-100 https://doi.org/10.1007/978-981-99-8894-5_8
33. Lee, M., Choi, M., Yang, T., Kim, J., Kim, J., Kwon, O. and Cho, N. A Study on the Advancement of Intelligent Military Drones: Focusing on Reconnaissance Operations. IEEE Access, 2024, 12, pp. 55964-55975, https://doi.org/10.1109/ACCESS.2024.3390035
34. Shah, I. A., Jhanjhi, N. Z. and Brohi, S. N. Use of AI-Based Drones in Smart Cities. In: Cybersecurity Issues and Challenges in the Drone Industry, IGI Global, 2024, pp. 362-380, https://doi.org/10.4018/979-8-3693-0774-8.ch015
35. POMORTSEVA О., KOBZAN, S., and SHTERNDOK Е. Use of geo-information technologies when conducting combat operations in modern conditions. Municipal Economy of Cities, 2023, 1(175), pp. 69–73. https://doi.org/10.33042/2522-1809- 2023-1-175-69-73
36. Agbeyangi, A., Odiete, J. and Olorunlomerue, A. Review on UAVs used for Aerial Surveillance. Journal of Multidisciplinary Engineering Science and Technology, 2016, 3(10), pp. 5713-5719.
37. Unmanned Aircraft System Airspace Integration Plan, Department of Defense, 2011.
38. Regulation No 1592/2002 of the European Parliament and of the Council on Common Rules in the Field of Civil Aviation and Establishing a European Aviation Safety Agency, 2002. ISSN 2073-7394 Систем
39. Radovanović, M., Alexandar Petrovski, Vinko Žnidaršič and Aner Behlić. The C5ISR System Integrated With Unmanned Aircraft in the Large-Scale Combat Operations. Vojenské rozhledy. 2023, 32 (2), 098- 118. 10.3849/2336-2995.32.2023.02.098-118
40. ALLIED JOINT DOCTRINE, NATO Standardization Office (NSO), NATO Standard AJP-01 2017, point 2.20, 2-12
41. Categorization and classification of civil unmanned aircraft systems, ISO 21895:2020, 2020.
42. Minimum Training Requirements for Unmanned Aircraft Systems (UAS) Operators and Pilots, NATO STANDARD ATP3.3.8.1, (2019), Edition B Version 1, NATO, 2-2 (16),
43. Fellner, A. and Fellner, R. Navigation preparation of unmanned aircraft systems for the operational activities of Volunteer Fire Services – selected examples [Nawigatorskie przygotowanie systemów bezzałogowych statków powietrznych do\ operacyjnych działań jednostek ochotniczych straży pożarnych–wybrane przykłady]. Acta Iuridica Resoviensia, 2022, 38(120), pp. 83 - 85. http://dx.doi.org/10.15584/actaires.2022.3.5
44. Fellner, R. and Burnos, A. Unmanned aerial vehicles in operational activities–example of selected volunteer fire brigade units. Scientific Reports of Fire University, 2023, 86(null), pp. 175-190. https://doi.org/10.5604/01.3001.0053.7153
45. Thompson, K. How the Drone War in Ukraine Is Transforming Conflict, 2024, Retrieved January 30, 2024, from https://www.cfr.org/article/how-drone-war-ukraine-transforming-conflict.
46. REDMON, J., DIVVALA, S., GIRSHICK, R. and FARHADI, A. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779-788
47. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J. and Zisserman, A. The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision, 2015, 111(1), pp. 98–136.
48. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C.L. Microsoft coco: Common objects in context. In: Proceedings of the 13th European Conference on Computer Cision (ECCV 2014), 2014, pp. 740–755.
49. Wang, C.Y., Mark Liao, H.Y., Wu, Y.H., Chen, P.Y., Hsieh, J.W. and Yeh, I.H. CSPNet: A new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2020), Washington, DC, USA, 2020, pp. 390–391.
50. Wang, K., Liew, J.H., Zou, Y., Zhou, D. and Feng, J. (2019). Panet: Few-shot image semantic segmentation with prototype= alignment. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV 2019), Seoul, Korea, 2019, pp. 9197–9206.
51. Redmon, J. and Farhadi, A. Yolov3: An incremental improvement, 2018, https://doi.org/10.48550/arXiv.1804.02767
52. Xu, R., Lin, H., Lu, K., Cao, L. and Liu, Y. A Forest Fire Detection System Based on Ensemble Learning. Forests, 2021, 12(2), 217:1-17, https://doi.org/10.3390/f12020217
53. Redmon, J. and Farhadi, A. Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 6517-6525, https://doi.org/10.1109/CVPR.2017.690
54. Jocher, G., Munawar, R. and Exel, A. YOLOv8 Official Documentation, Retrieved Mart 25, 2024, from https://docs.ultralytics.com
55. Gupta, P., Pareek, B., Singal, G. and Rao, D. V. Military and Civilian Vehicles Classification. Mendeley Data, 2021, V1, https://doi.org/10.17632/njdjkbxdpn.1
56. Jana, A. Military Tanks Dataset (Images), 2021, Retrieved Mart 22, 2024, from https://www.kaggle.com/datasets/antoreepjana/military-tanks-dataset-images
57. MSTAR overview, 2023, Retrieved Mart 25, 2024, from https://www.sdms.afrl.af.mil/index.php?collection=mstar
58. Roboflow, 2024, Retrieved Mart 15, 2024, https://universe.roboflow.com/
59. Wang, W. & Yuan, X. Recent advances in image dehazing. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3), pp. 410- 436. https://doi.org/10.1109/JAS.2017.7510532.
60. Yang, W., Tan, R., Wang, S., Kot, A. and Liu, J. Learning to Remove Rain in Video with Self-Supervision, IEEE Transactions on Pattern Analysis & Machine Intelligence, 2024, 46(03), pp. 1378-1396, https://doi.org/1109/TPAMI.2022.3186629
2. Bayramov, A.A., Hashimov, E.G., and Amanov, R.R. Identification of invisible objects using GIS technology. In: Proceedings of the Azerbaijan Geographical Society Geography and Natural Resources, 2016, pp. 124-126.
3. Bares, M. Interoperability Modeling of the C4ISR Systems. In: RTO SCI Symposium on “System Concepts for Integrated Air Defense of Multinational Mobile Crisis Reaction Forces”, Valencia, Spain, 2021, pp. 16-1 – 16-16.
4. Petrovski, A. & Toshevski, M. GIS in Army: Application of GIS in Geo-Reconnaissance and C4IS in Army Purposes. In: 2 nd International Scientific Conference GEOBALCANICA, 2016, pp. 153-160.
5. Jović, Ž. Combat engagement of drones in USA counterterrorist operations. Bezbednost, 2016, 58(3), pp. 171-190.
6. Petrovski, A., Taneski, N. and Bogatinov, D. Geography in Geospatial Intelligence - C4IRS and Cyber Security. In: 5 th Int. Scientific conference Safety and crisis management – Theory and practise Safety for the future – SecMan 2019, pp. 64-72.
7. Milić, A., Ranđelović, A. and Radovanović, M. Use of drones in operations in the urban environment. 5 th International Scientific conference Safety and crisis management – Theory and practise Safety for the future – SecMan 2019, 2019, pp.\ 124-130.
8. Adamski, M. Effectiveness analysis of UCAV used in modern military conflicts. Aviation, 2020, 24(2), 66-71. https://doi.org/10.3846/aviation.2020.12144
9. Žnidaršič, V., Radovanović, M. and Stevanović, D. Modeling the organisational implementation of a drone and counterdrone operator into the Serbian Armed Forces rifle section. Vojno delo, 2020, 72(3), pp. 84-109. https://doi.org/10.5937/vojdelo2003084Z
10. Petrovski, A. And Radovanović, M. (2021). Application of detection reconnaissance technologies use by drones in collaboration with C4IRS for military interested. Contemporary Macedonian Defence, 2021, 21(40), pp. 117-126.
11. Hashimov, E.G. and Huseynov, B.S. Some aspects of the combat capabilities and application of modern UAVs. National security and military sciences, 2021, 3(7), pp. 14-24.
12. Radovanović, M., Petrovski, A., Žindrašič, V., and Ranđelović, A. Application of the fuzzy AHP -VIKOR hybrid model in the selection of an unmanned aircraft for the needs of tactical units of the armed forces. Scientific Technical Review, 2021, 71(2), 26-35. https://doi.org/10.5937/str2102026R
13. Ilić, D. and Tomašević, V. The impact of the Nagorno-Karabakh conflict in 2020 on the perception of combat drones. Serbian Journal of Engineering Management, 2021, 6(1), pp. 9-21. https://doi.org/10.5937/SJEM2101009I
14. Radovanović, M., Samopjan, M. and Petrovski, A. Possibility of Implementation of Drons in Mortar Units in Order to Increase the Efficiency of Fire Support Units. In: 24. Međunarodna DQM konferencija Upravljanje kvalitetom i pouzdanošću ICDQM -2021, 2021, pp. 307–315.
15. Ciolponea, C.A. The Integration of Unmanned Aircraft System (UAS) in Current Combat Operations. Land Forces Academy Review, 2022, 27(4), pp. 333–47.
16. Szulc, T. Possibilities of using unmanned combat assets in tactical operations in the mountains. Scientific Journal of the Military University of Land Forces, 2023, 208(2), pp. 112-127. https://doi.org/10.5604/01.3001.0053.7270
17. Zaher, R. A. H. Drones and their Role in the Evolution of Generations of War. The International and Political Journal, 2023, 56(Sep. 2023), pp. 69–86. https://doi.org/10.31272/ipj.i56.246
18. Hashimov, E.G., Bayramov, A.A., and Khalilov, B.M. Orthophotomap making of terrain for detection military targets. National security and military sciences, 2016, 4(2), pp. 14-20.
19. Li, S., Huang, H., Meng, X., Wang, M., Li, Y. and Xie L. A Glove-Wearing Detection Algorithm Based on Improved YOLOv8. Sensors, 2023, 23(24):9906. https://doi.org/10.3390/s23249906
20. Roy A. M., Bhaduri, J. DenseSPH-YOLOv5: An automated damage detection model based on DenseNet and SwinTransformer prediction head-enabled YOLOv5 with attention mechanism. Advanced Engineering Informatics, 2023, 56(12), 102007, https://doi.org/10.1016/j.aei.2023.102007
21. Duan, J., Bai, T., Lv, B., Zong, H. and Fu, H. (2024). Lightweight Detection of Fasteners with YOLOv8 Combined with ShuffleNetV2. In: Proceedings of the 6th Int. Conf. on Electrical Eng. and Information Techn. for Rail Transp. (EITRT 2023). Lecture Notes in Electrical Engineering, 2024, 1136, pp. 480-489, https://doi.org/10.1007/978-981-99-9315-4_46
22. Wang, H., Han, X., Song, X., Su J., Li Y., Zheng W. and Wu X. Research on automatic pavement crack identification Based on improved YOLOv8. Int. J. on Int. Design and Manufacturing, 2024, 18(2), https://doi.org/10.1007/s12008-024-01769-3
23. Sun, D., Zhang, K., Zhong, H., Xie J., Xue X., Yan, M., Wu, W. and Li, J. Efficient Tobacco Pest Detection in Complex Environments Using an Enhanced YOLOv8 Model. Agriculture, 2024, 14(3):353. https://doi.org/10.3390/agriculture14030353
24. Wu, Y., Liao, T., Chen, F., Zeng, H., Ouyang, S. and Guan, J. Overhead Power Line Damage Detection: An Innovative Approach Using Enhanced YOLOv8. Electronics, 2024, 13(4):739. https://doi.org/10.3390/electronics13040739
25. Wen, G., Li, M., Luo, Y., Shi, C. & Tan, Y. The improved YOLOv8 algorithm based on EMSPConv and SPE-head modules, 2024.
26. Niu, S., Xu, X., Liang, A., Yun, Y., Li, L., Hao, F., Bai, J. and Ma, D. Research on a Lightweight Method for Maize Seed Quality Detection Based on Improved YOLOv8. IEEE Access, 2024, 12, pp. 32927-32937, https://doi.org/10.1109/ACCESS.2024.3365559
27. Fazekas, F. Application of Artificial Intelligence in Military Operations Planning. AARMS – Academic and Applied Research in Military and Public Management Science, 2022, 21(2), pp. 41–54. https://doi.org/10.32565/aarms.2022.2.
28. Kania, E. B. (2019). Chinese Military Innovation in the AI Revolution. The RUSI Journal, 2019, 164(5–6), pp. 26–34. https://doi.org/10.1080/03071847.2019.1693803
29. Forrest E.M, Boudreaux, B., Lohn, J.A., Ashby, M., Curriden, C., Klima, K. and Grossman, D. Military Applications of Artificial Intelligence: Ethical Concerns in an Uncertain World. Santa Monica, CA: RAND Corporation, 2020. https://www.rand.org/pubs/research_reports/RR3139-1.html
30. Walsh, G., Andersen, N., Stoianov, N. and Jänicke, S. A Survey of Geospatial-Temporal Visualizations for Military Operations. In: Proceedings of the 18th Interna-tional Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) – IVAPP, 2023, pp. 115-129. https://doi.org/10.5220/0011902500003417
31. Bhagat R. S. Artificial Intelligence and Data Applications In Military Opera-tions. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), 2023, 3(1), pp. 264-271, https://doi.org/10.48175/IJARSCT-12040
32. De Castro, B.A., Pochmann, P.G.C. and Neves, E.B. (2024). Artificial Intelligence Applica-tions in Military Logistics Operations. In: Developments and Advances in Defense and Security. MICRADS 2023. Smart Innovation, Systems and Technologies, 2024, 380, pp. 89-100 https://doi.org/10.1007/978-981-99-8894-5_8
33. Lee, M., Choi, M., Yang, T., Kim, J., Kim, J., Kwon, O. and Cho, N. A Study on the Advancement of Intelligent Military Drones: Focusing on Reconnaissance Operations. IEEE Access, 2024, 12, pp. 55964-55975, https://doi.org/10.1109/ACCESS.2024.3390035
34. Shah, I. A., Jhanjhi, N. Z. and Brohi, S. N. Use of AI-Based Drones in Smart Cities. In: Cybersecurity Issues and Challenges in the Drone Industry, IGI Global, 2024, pp. 362-380, https://doi.org/10.4018/979-8-3693-0774-8.ch015
35. POMORTSEVA О., KOBZAN, S., and SHTERNDOK Е. Use of geo-information technologies when conducting combat operations in modern conditions. Municipal Economy of Cities, 2023, 1(175), pp. 69–73. https://doi.org/10.33042/2522-1809- 2023-1-175-69-73
36. Agbeyangi, A., Odiete, J. and Olorunlomerue, A. Review on UAVs used for Aerial Surveillance. Journal of Multidisciplinary Engineering Science and Technology, 2016, 3(10), pp. 5713-5719.
37. Unmanned Aircraft System Airspace Integration Plan, Department of Defense, 2011.
38. Regulation No 1592/2002 of the European Parliament and of the Council on Common Rules in the Field of Civil Aviation and Establishing a European Aviation Safety Agency, 2002. ISSN 2073-7394 Систем
39. Radovanović, M., Alexandar Petrovski, Vinko Žnidaršič and Aner Behlić. The C5ISR System Integrated With Unmanned Aircraft in the Large-Scale Combat Operations. Vojenské rozhledy. 2023, 32 (2), 098- 118. 10.3849/2336-2995.32.2023.02.098-118
40. ALLIED JOINT DOCTRINE, NATO Standardization Office (NSO), NATO Standard AJP-01 2017, point 2.20, 2-12
41. Categorization and classification of civil unmanned aircraft systems, ISO 21895:2020, 2020.
42. Minimum Training Requirements for Unmanned Aircraft Systems (UAS) Operators and Pilots, NATO STANDARD ATP3.3.8.1, (2019), Edition B Version 1, NATO, 2-2 (16),
43. Fellner, A. and Fellner, R. Navigation preparation of unmanned aircraft systems for the operational activities of Volunteer Fire Services – selected examples [Nawigatorskie przygotowanie systemów bezzałogowych statków powietrznych do\ operacyjnych działań jednostek ochotniczych straży pożarnych–wybrane przykłady]. Acta Iuridica Resoviensia, 2022, 38(120), pp. 83 - 85. http://dx.doi.org/10.15584/actaires.2022.3.5
44. Fellner, R. and Burnos, A. Unmanned aerial vehicles in operational activities–example of selected volunteer fire brigade units. Scientific Reports of Fire University, 2023, 86(null), pp. 175-190. https://doi.org/10.5604/01.3001.0053.7153
45. Thompson, K. How the Drone War in Ukraine Is Transforming Conflict, 2024, Retrieved January 30, 2024, from https://www.cfr.org/article/how-drone-war-ukraine-transforming-conflict.
46. REDMON, J., DIVVALA, S., GIRSHICK, R. and FARHADI, A. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779-788
47. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J. and Zisserman, A. The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision, 2015, 111(1), pp. 98–136.
48. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C.L. Microsoft coco: Common objects in context. In: Proceedings of the 13th European Conference on Computer Cision (ECCV 2014), 2014, pp. 740–755.
49. Wang, C.Y., Mark Liao, H.Y., Wu, Y.H., Chen, P.Y., Hsieh, J.W. and Yeh, I.H. CSPNet: A new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2020), Washington, DC, USA, 2020, pp. 390–391.
50. Wang, K., Liew, J.H., Zou, Y., Zhou, D. and Feng, J. (2019). Panet: Few-shot image semantic segmentation with prototype= alignment. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV 2019), Seoul, Korea, 2019, pp. 9197–9206.
51. Redmon, J. and Farhadi, A. Yolov3: An incremental improvement, 2018, https://doi.org/10.48550/arXiv.1804.02767
52. Xu, R., Lin, H., Lu, K., Cao, L. and Liu, Y. A Forest Fire Detection System Based on Ensemble Learning. Forests, 2021, 12(2), 217:1-17, https://doi.org/10.3390/f12020217
53. Redmon, J. and Farhadi, A. Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 6517-6525, https://doi.org/10.1109/CVPR.2017.690
54. Jocher, G., Munawar, R. and Exel, A. YOLOv8 Official Documentation, Retrieved Mart 25, 2024, from https://docs.ultralytics.com
55. Gupta, P., Pareek, B., Singal, G. and Rao, D. V. Military and Civilian Vehicles Classification. Mendeley Data, 2021, V1, https://doi.org/10.17632/njdjkbxdpn.1
56. Jana, A. Military Tanks Dataset (Images), 2021, Retrieved Mart 22, 2024, from https://www.kaggle.com/datasets/antoreepjana/military-tanks-dataset-images
57. MSTAR overview, 2023, Retrieved Mart 25, 2024, from https://www.sdms.afrl.af.mil/index.php?collection=mstar
58. Roboflow, 2024, Retrieved Mart 15, 2024, https://universe.roboflow.com/
59. Wang, W. & Yuan, X. Recent advances in image dehazing. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3), pp. 410- 436. https://doi.org/10.1109/JAS.2017.7510532.
60. Yang, W., Tan, R., Wang, S., Kot, A. and Liu, J. Learning to Remove Rain in Video with Self-Supervision, IEEE Transactions on Pattern Analysis & Machine Intelligence, 2024, 46(03), pp. 1378-1396, https://doi.org/1109/TPAMI.2022.3186629
Опубліковано
2024-09-06
Як цитувати
Radovanovic Marko Вивільнення автономних сил: інтеграція безпілотних літальних апаратів із штучним інтелектом у сучасну військову стратегію / Marko Radovanovic, Aleksandar Petrovski, Aner Behlic, Mohamed Zied Chaari, Elshan Giyas Hashimov, Radoslaw Fellner, Abayomi Agbeyangi // Системи управління, навігації та зв’язку. Збірник наукових праць. – Полтава: ПНТУ, 2024. – Т. 3 (77). – С. 55-69. – doi:https://doi.org/10.26906/SUNZ.2024.3.055.
Розділ
Управління в складних системах
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.