METHODOLOGY FOR DETERMINING THE LEVEL OF PROTECTION OF WORKERS IN CONDITIONS OF EXTRAORDINARY TEMPERATURE INFLUENCES

  • V. Glyva
  • O. Zemlyanska
  • O. Ilchyk
Keywords: temperature effect, thermal conductivity, protection, coefficient of thermal conductivity

Abstract

The protection of workers in conditions of non-regulatory (extreme) temperatures (low and high) requires the availability of effective protective materials and clothing made from them. To rationalize thermal protection, it is advisable to preevaluate its effectiveness under certain conditions, which can be carried out using calculation methods. For this, the basic equation of thermal conductivity in one-dimensional form is used. With the availability of data on thicknesses, specific heat capacities, densities and coefficients of thermal conductivity of biological tissues (skin, bones), it is possible to calculate the required efficiency and parameters of the material of the protective layer. For this purpose, a method of calculating thermal conductivity coefficients of each of the layers through which heat transfer occurs is provided. An explicit difference scheme was used for the numerical solution of the modeling equation. The obtained dependences provide values of thermal conductivity coefficients at the boundaries of layers with different thermophysical parameters. The number of nodes along the selected axis and grid step are chosen in each specific case, based on the required accuracy of the calculation. Taking into account possible discrepancies in the values of constants and coefficients, as well as the ambiguity of external atmospheric influences, it is necessary to include a certain margin of protection efficiency in the calculations.

Downloads

Download data is not yet available.

References

1. ITERNATIONAL ISO STANDARD 15743 First edition 2008-07-01 Ergonomics of the thermal environment — Cold workplaces — Risk assessment and management Ergonomie des ambiances thermiques — Lieux de travail dans le froid — Évaluation et management des risques Reference number ISO 15743:2008(E).
2. Костенко Т. В., Костирка О. В. 2018. Пропозиції щодо покращення теплового стану в підодежному просторі рятувальника. Вісті Донецького гірничого інституту. - № 1. - С. 53-60. doi:10.31474/1999-981x-2018-1-53-60
3. Болібрух Б. В. 2017. Визначення граничного часу роботи пожежника в теплозахисному одязі на основі тривимірної моделі. Науковий Вісник ХНУ. – Хмельницький, – № 1. – С. 95-104.
4. Rintamäki H. 2007. Human responses to cold. Alaska Med.;49(2 Suppl):29-31
5. Karjalainen S. 2012. Thermal comfort and gender: a literature review. Indoor Air Apr;22(2):96-109. doi: 10.1111/j.1600-0668.2011.00747.x.
6. Schaudienst Falk & Vogdt, Frank. (2017). Fanger’s model of thermal comfort: a model suitable just for men? Energy Procedia. 132. 129-134. doi: 10.1016/j.egypro.2017.09.658.
7. Тихонов А.Н., Самарский А.А. (1977). Уравнения математической физики. «Наука». 736 с.
Published
2022-11-29
How to Cite
Glyva V. Methodology for determining the level of protection of workers in conditions of extraordinary temperature influences / V. Glyva, O. Zemlyanska, O. Ilchyk // Control, Navigation and Communication Systems. Academic Journal. – Poltava: PNTU, 2022. – VOL. 4 (70). – PP. 142-144. – doi:https://doi.org/10.26906/SUNZ.2022.4.142.