А METHOD OF SIMULATION OF COMPUTER NETWORK TRAFFIC WITH FRACTAL PROPERTIES
DOI:
https://doi.org/10.26906/SUNZ.2022.4.075Keywords:
computer networks, network traffic, fractal dimension, Markov processes, simulation modeling, computer simulation modelAbstract
The goal of this work is to create a method of simulating computer network traffic with fractal properties for testing network algorithms and protocols. The object of research is the process of simulation modeling of network traffic. The subject of research is the methods and algorithms for modeling time series with fractal properties. Nowadays, mathematical models of self-similar time series are used for the mathematical description of telecommunication processes. In most cases, for selfsimilar traffic, predicting parameters based on the quality of QoS service, analytical expressions cannot be constructed, or such transformations can be constructed for too specific situations, so mostly analytical calculations are impractical. For this reason, to determine the main indicators of the quality of service, such as jitter, delay, average number of failures, and others, simulation modeling using self-similar traffic generators is used. This leads to the need for computationally simple generators of self –similar traffic with controlled fractal properties, which would give numerical sequences with properties as close as possible to the properties of the real traffic of the telecommunication network under investigation. In this paper, a method of simulation modeling of computer network traffic with fractal properties is proposed. The theory of fractal analysis and the theory of Markov processes were used to generate traffic. This method can be part of a software simulation model of a computer network, which in turn can be used for testing network algorithms and protocols. Also a developed simulation model of network traffic is planned to be used in the future for testing the quality of methods for determining the fractal dimension of time series, as well as for forecas ting the load of network devices in computer networks.Downloads
References
Zmeškal O., Nežádal M., Komendová B., Julínek M., Bžatek T. (2003), “Fractal analysis of printed structure images”,Institute of Physical and Applied Chemistry, of the methods used to perform analysis listed above, Brno University of Technology, Brno, Czech Republic.
Leland W., Taqqu М., Willinger W. (1997), “On the self-similar nature of IP-trafic”, IEEE/ACM Transactions on Networking, № 3, P. 423-431.
Кучук Г.А. (2005), “Метод дослідження фрактального мережного трафіка”, Системи обробки інформації, Вип. 5 (45), Харків, Україна, С. 74-84.
Кучук Г.А., Можаєв О.О., Воробйов О.В. (2006), “Аналіз та моделі самоподібного трафіка”, Авиационно-космическая техника и технология, № 9(35), С. 173-180.
Drieieva H., Drieiev O., Meleshko Ye., Yakymenko M., Mikhav V. (2022), “A method of determining the fractal dimension of network traffic by its probabilistic properties and experimental research of the quality of this method”, CEUR -WS, Vol.3171, Gliwice, Poland, R. 1694-1707, available at: http://ceur-ws.org/Vol-3171/paper120.pdf
Meleshko Ye., Drieiev O., Yakymenko M., Lysytsia D. (2020), “Developing a model of the dynamics of states of a recommendation system under conditions of profile injection attacks”, Eastern-European Journal of Enterprise Technologies, Vol. 4, No. 2(106), pp. 14-24, available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-85096707995&origin=resultslist
Meleshko Ye., Raskin L., Semenov S., Sira O. (2019), “Methodology of probabilistic analysis of state dynamics of multidimensional semi-Markov dynamic systems”, Eastern-European Journal of Enterprise Technologies, Vol. 6, No. 4(102), pp. 6-13, available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-85078054250&origin=resultslist
Dimitrakos TD, Kyriakidis EG (2008), “A semi-Markov decision algorithm for the maintenance of a production system with buffer capacity and continuous repair times”, International Journal of Production Economics, Vol. 111(2), pp. 752-762, doi: https://doi.org/10.1016/ j.ijpe .2007.03.010
Li Q.-L., Lui JCS, (2014), “Block-structured supermarket models, Discrete Event Dynamic Systems”, Vol. 26(2), pp. 147-182, doi: https:// doi.org/10.1007/s10626-014-0199-1
Okamura H., Miyata S., Dohi T., (2015), “A Markov Decision Process Approach to Dynamic Power Management in a Cluster System”, IEEE Access, Vol. 3, pp. 3039-3047, doi: https://doi.org/10.1109/access.2015.2508601
Li Q.-L. (2016), “Nonlinear Markov processes in large networks”, Special Matrices, Vol. 4(1), doi: https://doi.org/10.1515/spma-2016-0019
Feinberg EA, Yang F., (2015), “Optimal pricing for a GI/M/k/N queue with several customer types and holding costs”, Queuing Systems, Vol. 82(1-2), pp. 103-120, doi: https://doi.org/10.1007/s11134-015-9457-7
Ушанев К.В. (2015), “Имитационные модели системы массового обслуживания типа Pa/M/1, H2/M/1 и исследование на их основе качества обслуживания трафика со сложной структурой”, Системы управления, связи и безопасности. 2015, №4, С.217-251.
Добровольский Е.В., Нечипорук О.Л. (2005), “Моделирование сетевого трафика с использованием контекстных методов”, Наукові праці Одеської національної академії зв'язку імені О. С. Попова, Одеса, Україна, № 1, С.24-32.
Семенов С.Г., Мелешко Є.В., Ілюшко Я.В. (2011), “Математическая модель мультисервисного канала связи на основе экспоненциальной GERT-сети”, Системи озброєння і військова техніка, Харків, Україна, № 3(27), С.64-67.
Radivilova T., Ibrahim Y. Daradkeh, Kirichenko L. (2018), “Development of QoS Methods in the Information Networks with Fractal Traffic”, International Journal of Electronics and Telecommunications, 64 (1), Р. 27-32.
Barat M., Joveini Z., Sadri J., Khoushhal H.A. (2018), “Fractal Modeling of Big Data Networks”, International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI 2018), Canada, Montreal: Concordia University, Р. 1-4.
Jiang D., Huo L., Li Y. (2018), “Fine-granularity inference and estimations to network traffic for SDN”, PLoS ONE, No13(5), doi: doi.org/10.1371/journal.pone.0194302
Кучук Г.А, Можаєв О.О., Воробйов О.В. (2007), “Прогнозирование трафика для управления перегрузками интегрированной телекоммуникационной сети”, Радіоелектронні і комп’ютерні системи, № 8, С. 261-271, available at: http://nbuv.gov.ua/UJRN/recs_2007_8_48
Кучук Г.А., Можаєв О.О., Воробйов О.В. (2006), “Аналіз та моделі самоподібного трафіка”, Авиационно-космическая техника и технология, № 9, С. 173-180, available at: http://nbuv.gov.ua/UJRN/aktit_2006_9_35
Haffey M., Arlitt M., Williamson C. (2018), “Modeling, Analysis, and Characterization of Periodic Traffic on a Campus Edge Network”, 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), p. 170-182.
Kirichenko L., Radivilova T., Bulakh V. (2018), “Machine Learning in Classification Time Series with Fractal Properties”, available at: https://www.researchgate.net/publication/329973801_Machine_Learning_in_Classification_Time.
Drieieva H., Smirnov O., Drieiev O., Polishchuk Y., Brzhanov R., Aleksander M. (2020), “Method of Fractal Traffic Generation by a Model of Generator on the Graph”, COAPSN, CEUR-WS, Vol . 2616, Lviv, Ukraine, available at: http://ceur-ws.org/Vol-2616/paper31.pdf
Drieieva H., Drieiev O., Meleshko Ye., Yakymenko M., Mikhav V. (2022), “A Method of Determining the Fractal Dimension of Network Traffic by Its Probabilistic Properties and Experimental Research of the Quality of This Method”, CEUR-WS, Vol. 3171, Gliwice, Poland, Р. 1694-1707, available at: http://ceur-ws.org/Vol-3171/paper120.pdf