Flexural Behaviour of 3DCP Beams with Expanded Metal Sheet Reinforcement: Experimental Investigation and Numerical Verification

Authors

  • Petro Reznik O.M. Beketov National University of Urban Economy in Kharkiv
  • Dmytro Petrenko O.M. Beketov National University of Urban Economy in Kharkiv , image/svg+xml
  • Anton Volodymyrov O.M. Beketov National University of Urban Economy in Kharkiv , image/svg+xml
  • Dzhamaldii Alataiev O. M. Beketov National University of Urban Economy in Kharkiv image/svg+xml

DOI:

https://doi.org/10.26906/znp.2025.64.4144

Keywords:

3D-printed concrete (3DCP), flexural tensile strength, expanded metal sheet, finite-element modelling, permanent formwork

Abstract

An experimental and numerical study of the flexural behavior of 3D-printed concrete (3DCP) beams reinforced with expanded metal sheet are presented in this paper. Four-point bending tests on beams of 3DCP were carried out in accordance with DSTU B V.2.7-214:2009, recording load–deflection curves and strains. The 3DCP showed an equivalent axial tensile strength 30–45 % lower than that of class C16/20 concrete. Correctly oriented sheet reinforcement increased failure load and flexural toughness by about 30–40 %, while a 3D FE model in LIRA-FEM reproduced ultimate loads within 5–10 % but underestimated stiffness.

References

1. Buswell, R. A., De Silva, W. L., Jones, S. Z., & Dirrenberger, J. (2018). 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research, 112, 37–49. https://doi.org/10.1016/j.cemconres.2018.05.006.

2. Wangler, T., Roussel, N., Bos, F. P., Salet, T. A. M., & Flatt, R. J. (2019). Digital concrete: A review. Cement and Concrete Research, 123, 105780. https://doi.org/10.1016/j.cemconres.2019.105780.

3. Mechtcherine, V., Bos, F. P., Perrot, A., Da Silva, W. R. L., Nerella, V. N., Fataei, S., Wolfs, R. J. M., Sonebi, M., & Roussel, N. (2020). Extrusion-based additive manufacturing with cement-based materials—Production steps, processes and their underlying physics: A review. Cement and Concrete Research, 132, 106037. https://doi.org/10.1016/j.cemconres.2020.106037

4. Rehman, A. U., & Kim, J.-H. (2021). 3D concrete printing: A systematic review of rheology, mix designs, mechanical, microstructural and durability characteristics. Materials, 14(14), 3800. https://doi.org/10.3390/ma14143800.

5. Hou, S., Duan, Z., Xiao, J., & Ye, J. (2021). A review of 3D printed concrete: Performance requirements, testing measurements and mix design. Construction and Building Materials, 273, 121745. https://doi.org/10.1016/j.conbuildmat.2020.121745.

6. Surehali, S. A. O., Tripathi, A., & Neithalath, N. (2023). Anisotropy in additively manufactured concrete specimens under compressive loading—Quantification of the effects of layer height and fiber reinforcement. Materials, 16(15), 5488. https://doi.org/10.3390/ma16155488.

7. Skibicki, S., Dvořák, R., Pazdera, L., Topolář, L., Kocáb, D., Alexa, M., Cendrowski, K., & Hoffmann, M. (2024). Anisotropic mechanical properties of 3D printed mortar determined by standard flexural and compression test and acoustic emission. Construction and Building Materials, 452, 138957. https://doi.org/10.1016/j.conbuildmat.2024.138957

8. Ma, G., Li, Z., Wang, L., Wang, F., & Sanjayan, J. (2019). Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Construction and Building Materials, 202, 770–783. https://doi.org/10.1016/j.conbuildmat.2019.01.008.

9. Liu, C., Yue, S., Zhou, C., Sun, H., Deng, S., Gao, F., & Tan, Y. (2021). Anisotropic mechanical properties of extrusion-based 3D printed layered concrete. Journal of Materials Science, 56, 16851–16864. https://doi.org/10.1007/s10853-021-06416-w.

10. Zhao, Y., Wu, X., Zhu, L., Yang, Z., Wang, Y., & Xi, X. (2021). The influence of polypropylene fiber on the working performance and mechanical anisotropy of 3D printing concrete. Journal of Advanced Concrete Technology, 19(12), 1264–1274. https://doi.org/10.3151/jact.19.1264.

11. Jiang, Q., Liu, Q., Wu, S., Zheng, H., & Sun, W. (2022). Modification effect of nanosilica and polypropylene fiber for extrusion-based 3D printing concrete: Printability and mechanical anisotropy. Additive Manufacturing, 56, 102944. https://doi.org/10.1016/j.addma.2022.102944

12. Feng, P., Meng, X., Chen, J.-F., & Ye, L.-P. (2015). Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials, 93, 486–497. https://doi.org/10.1016/j.conbuildmat.2015.05.132

13. Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G. F., & Thorpe, T. (2012). Hardened properties of high-performance printing concrete. Cement and Concrete Research, 42(3), 558–566. https://doi.org/10.1016/j.cemconres.2011.12.003

14. Wolfs, R. J. M., Bos, F. P., & Salet, T. A. M. (2018). Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cement and Concrete Research, 106, 103–116. https://doi.org/10.1016/j.cemconres.2018.02.001

15. Nerella, V. N., Hempel, S., & Mechtcherine, V. (2019). Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Construction and Building Materials, 205, 586–601. https://doi.org/10.1016/j.conbuildmat.2019.01.235

16. Sanjayan, J. G., Nematollahi, B., Xia, M., & Marchment, T. (2018). Effect of surface moisture on inter-layer strength of 3D printed concrete. Construction and Building Materials, 172, 468–475. https://doi.org/10.1016/j.conbuildmat.2018.03.232

17. Hosseini, E., Zakertabrizi, M., Korayem, A. B., & Xu, G. (2019). A novel method to enhance the interlayer bonding of 3D printing concrete: An experimental and computational investigation. Cement and Concrete Composites, 99, 112–119. https://doi.org/10.1016/j.cemconcomp.2019.03.008

18. van den Heever, M., du Plessis, A., & van Zijl, G. (2022). Evaluating the effects of porosity on the mechanical properties of extrusion-based 3D printed concrete. Cement and Concrete Research, 153, 106695. https://doi.org/10.1016/j.cemconres.2021.106695

19. Ma, L., Zhang, Q., Lombois-Burger, H., Jia, Z., Zhang, Z., Niu, G., & Zhang, Y. (2022). Pore structure, internal relative humidity, and fiber orientation of 3D printed concrete with polypropylene fiber and their relation with shrinkage. Journal of Building Engineering, 61, 105250. https://doi.org/10.1016/j.jobe.2022.105250

20. Ding, T., Xiao, J., Zou, S., & Zhou, X. (2020). Anisotropic behavior in bending of 3D printed concrete reinforced with fibers. Composite Structures, 254, 112808. https://doi.org/10.1016/j.compstruct.2020.112808

21. Xiao, J., Liu, H., & Ding, T. (2021). Finite element analysis on the anisotropic behavior of 3D printed concrete under compression and flexure. Additive Manufacturing, 39, 101712. https://doi.org/10.1016/j.addma.2020.101712

22. Jipa, A., & Dillenburger, B. (2022). 3D printed formwork for concrete: State-of-the-art, opportunities, challenges, and applications. 3D Printing and Additive Manufacturing, 9(2), 84–107. https://doi.org/10.1089/3dp.2021.0024

23. Mata-Falcón, J., Bischof, P., Huber, T., Anton, A., Burger, J., Ranaudo, F., Jipa, A., Gebhard, L., Reiter, L., Lloret-Fritschi, E., Van Mele, T., Block, P., Gramazio, F., Kohler, M., Dillenburger, B., Wangler, T., & Kaufmann, W. (2022). Digitally fabricated ribbed concrete floor slabs: A sustainable solution for construction. RILEM Technical Letters, 7, 68–78. https://doi.org/10.21809/rilemtechlett.2022.161

24. Burger, J., Huber, T., Lloret-Fritschi, E., Mata-Falcón, J., et al. (2022). Design and fabrication of optimised ribbed concrete floor slabs using large scale 3D printed formwork. Automation in Construction, 144, 104599. https://doi.org/10.1016/j.autcon.2022.104599

25. UkrNDNC. (2009). DSTU B V.2.7-214:2009. Concretes. Methods of determination of strength by control samples [State standard of Ukraine]. Ukrainian Research and Training Center for Standardization, Certification and Quality.

26. LIRALAND Group. (n.d.). LIRA-FEM: Structural analysis software [Computer software]. Retrieved from https://www.liraland.com/lira/

27. Reznik, P. A., Petrenko, D. H., Volodymyrov, A. V., Alataiev, D. A., & Maksymenko, V. O. (2025). Strength anisotropy of 3D-printed concrete: Experimental investigation and statistical analysis. Scientific Bulletin of Construction, 112(1), 248–255. https://doi.org/10.33042/2311-7257.2025.112.1.30

28. Ministry of Regional Development and Construction of Ukraine. (2009). DBN V.2.6-98:2009. Concrete and reinforced concrete structures. Basic provisions (with Amendment No. 1, effective from 2020) [State building code of Ukraine]. Minregionbud of Ukraine.

29. Gebhard, L., van der Woerd, J., Bos, F., & Salet, T. (2021). Structural behaviour of 3D printed concrete beams with various reinforcement strategies. Engineering Structures, 240, 112380. https://doi.org/10.1016/j.engstruct.2021.112380

30. Liu, X., Dobrzanski, J., Kolawole, J. T., & Buswell, R. (2025). Factors affecting the flexural performance of reinforced 3D printed concrete beams. Engineering Structures, 337, 120497. https://doi.org/10.1016/j.engstruct.2025.120497

Downloads

Published

2025-06-26

How to Cite

Reznik , P., Petrenko, D., Volodymyrov, A., & Alataiev, D. (2025). Flexural Behaviour of 3DCP Beams with Expanded Metal Sheet Reinforcement: Experimental Investigation and Numerical Verification. Academic Journal Industrial Machine Building Civil Engineering, 1(64), 119–129. https://doi.org/10.26906/znp.2025.64.4144

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.