Strain Energy Density-Based Topology Optimization Using SIMP and Local Failure Criteria for 3D-Printed Concrete Structures

Authors

  • Oleg Kalmykov O. M. Beketov National University of Urban Economy in Kharkiv, image/svg+xml
  • Ivan Demianenko O. M. Beketov National University of Urban Economy in Kharkiv, image/svg+xml
  • Sergei Potapov O. M. Beketov National University of Urban Economy in Kharkiv, image/svg+xml
  • Dzhmaldii Alataev O. M. Beketov National University of Urban Economy in Kharkiv, image/svg+xml

DOI:

https://doi.org/10.26906/znp.2025.64.4139

Keywords:

topology optimization, simp, flat 3dcp, strain energy density, concrete

Abstract

This paper presents a strain energy density–based topology optimization method tailored for brittle materials such as 3D-printed concrete. Extending the SIMP framework, the approach incorporates a local failure criterion derived from a Lode–Nadai ultimate strain energy model, allowing each element to adapt to tension-, compression-, or shear-dominated stress states. A memory-locking mechanism preserves elements that exceed their local energy limits, preventing unstable material removal and improving structural robustness. The method is implemented in the FEniCS finite element environment, enabling full customization of material behavior and numerical routines. Benchmark simulations of a slab, cantilever beam, and foundation block demonstrate that the proposed strategy generates manufacturable, failure-resistant layouts and produces more physically consistent topologies than traditional compliance-based designs, particularly for materials with limited tensile capacity.

References

1. Bendsøe, M. P., & Sigmund, O. (2003). Topology Optimization: Theory, Methods, and Applications. Springer. https://doi.org/10.1007/978-3-662-05086-6

2. Sigmund, O., & Maute, K. (2013). Topology optimization approaches. Structural and Multidisciplinary Optimization, 48(6), 1031–1055. https://doi.org/10.1007/s00158-013-0978-6

3. Rozvany, G. I. N. (2009). A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization, 37(3), 217–237. https://doi.org/10.1007/s00158-009-0464-8

4. Ghaffari, M., & Maroufi, S. (2020). A stress-constrained topology optimization method based on energy equivalence. Engineering Optimization, 52(6), 987–1004. https://doi.org/10.1080/0305215X.2019.1646975

5. Nguyen, D. D., Bruns, T. E., & Tortorelli, D. A. (2010). Stress-based topology optimization for continua. Structural and Multidisciplinary Optimization, 42(4), 591–604. https://doi.org/10.1007/s00158-010-0565-6

6. Lian, J., Luo, Y., & Huang, X. (2021). Topology optimization using strain energy density and failure index constraints. Materials & Design, 197, 109233. https://doi.org/10.1016/j.matdes.2020.109233

7. Luo, Y., & Kang, Z. (2022). Stress-constrained topology optimization using energy-based failure criteria. Computer Methods in Applied Mechanics and Engineering, 390, 114536. https://doi.org/10.1016/j.cma.2021.114536

8. Nadai, A. (1950). Theory of Flow and Fracture of Solids. McGraw-Hill.

9. You, F., & Chen, L. (2015). A novel energy-based failure criterion for quasi-brittle materials. International Journal of Solids and Structures, 58, 107–117. https://doi.org/10.1016/j.ijsolstr.2014.11.003

10. Panda, B., & Tan, M. J. (2018). Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceramics International, 44(9), 10258–10265. https://doi.org/10.1016/j.ceramint.2018.03.184

11. Ma, G., & Wang, L. (2018). A critical review of preparation design and workability measurement of concrete material for large-scale 3D printing. Frontiers of Structural and Civil Engineering, 12(3), 382–400. https://doi.org/10.1007/s11709-018-0482-6

12. Hambach, M., & Volkmer, D. (2017). Properties of 3D-printed fiber-reinforced Portland cement paste. Cement and Concrete Composites, 79, 62–70. https://doi.org/10.1016/j.cemconcomp.2017.02.007

13. Li, J., Liang, H., Zhang, D., & Zhao, J. (2022). A Lode-angle dependent criterion for concrete failure under 3D stress states. Engineering Fracture Mechanics, 268, 108453. https://doi.org/10.1016/j.engfracmech.2022.108453

14. Alnæs, M. S., et al. (2015). The FEniCS project version 1.5. Archive of Numerical Software, 3(100), 9–23. https://doi.org/10.11588/ans.2015.100.20553

15. Kohn, R. V., & Strang, G. (1986). Optimal design and relaxation of variational problems. Communications on Pure and Applied Mathematics, 39(1), 113–137. https://doi.org/10.1002/cpa.3160390109

16. Nguyen, T., & Paulino, G. H. (2017). Strain-based formulation for topology optimization with material failure constraints. Computer Methods in Applied Mechanics and Engineering, 318, 785–810. https://doi.org/10.1016/j.cma.2017.03.023

17. Wang, M. Y., Wang, X., & Guo, D. (2003). A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192(1), 227–246. https://doi.org/10.1016/S0045-7825(02)00585-8

18. Шмуклер В.С. (2017). Нові енергетичні принципи раціоналізації конструкцій. Збірник наукових праць Українського державного університету залізничного транспорту, 167, 54-69. https://doi.org/10.18664/1994-7852.167.2017.97206

19. Калмиков О.О., Резнік П.А., В’юнковський В.П., Дем’яненко І.М., Булдаков О.О. (2025). Про пошук оптимальної топології залізобетонної плити перекриття. Комунальне господарство міст, 4(192), 228–235. https://doi.org/10.33042/3083-6727-2025-4-192-228-235

20. Kovalenko, L., Kalmykov, O., Reznik, P., & Demianenko, I. (2023). Numerical implementation of multidimensional functions extremum search. Lecture Notes in Networks and Systems, 807, 82–94. https://doi.org/10.1007/978-3-031-46874-2_8

21. Shmukler, V., Babaev, V., Kovalenko, L., Kalmykov, O., & Demianenko, I. (2023). Method of integral gradients for searching global extremum of multivariable functions (procedure improvement). Lecture Notes in Networks and Systems, 807, 71–81. https://doi.org/10.1007/978-3-031-46874-2_7

Downloads

Published

2025-12-26

How to Cite

Kalmykov, O., Demianenko, I., Potapov, S., & Alataev, D. (2025). Strain Energy Density-Based Topology Optimization Using SIMP and Local Failure Criteria for 3D-Printed Concrete Structures. Academic Journal Industrial Machine Building Civil Engineering, 1(64), 80–88. https://doi.org/10.26906/znp.2025.64.4139

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.