Сalculation of optimal parameters for a vibratory finishing machine for decorative elements with an active working tool

Authors

DOI:

https://doi.org/10.26906/znp.2023.61.3853

Keywords:

vibratory finishing, tumbling, active working tool, mathematical model of dynamic interaction between the working tool and workpiece in a vibratory machine, optimal parameters, phase shift of vibrations of the working tool and workpiece

Abstract

The calculation of optimal parameters for a new design vibration installation with an active working body is proposed using numerical methods. By modeling the system as a mass-spring-damper system and applying harmonic Fourier analysis of the vibrations, a mathematical model of the dynamic interaction between the working body and the part was obtained, taking into account additional friction forces, the angle of inclination, and elastic and damping forces. The key determined parameters—phase shift between the vibrations of the working body, the part, and the abrasive. An example of calculating optimal parameters using the gradient descent method is provided. Based on the calculation results, comparative time graphs of the phase shift of vibrations of the part and the working body, as well as amplitude, were constructed.

References

1. Jia, L., Wang, C., Liu, Z. (2023). Multifrequency controlled synchronization of four inductor motors by the fixed frequency ratio method in a vibration system. Scientific Reports, 13, 2467. DOI: https://doi.org/10.1038/s41598-023-29603-y

https://doi.org/10.1038/s41598-023-29747-2

2. Blekhman, I.I. (2000). Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications. World Scientific. DOI: https://doi.org/10.1142/9789812794659

https://doi.org/10.1142/3771 DOI: https://doi.org/10.1142/3771

3. Zou, M., Fang, P., Hou, Y., Wang, Y., Hou, D., Peng, H. (2021). Synchronization analysis of two eccentric rotors with double-frequency excitation considering sliding mode control. Journal of Communication Nonlinear Science and Numerical Simulation, 92, 105458. DOI: https://doi.org/10.1016/j.cnsns.2020.105458

https://doi.org/10.1016/j.cnsns.2021.105458

4. Khalil, H.K., Strangas, E.G., Jurkovic, S. (2009). Speed Observer and reduced nonlinear model for sensorless control of induction motors. IEEE Transactions on Control Systems Technology, 17(2), 327-339.. DOI: https://doi.org/10.1109/TCST.2008.2000977

https://doi.org/10.1109/TCST.2008.2006697

5. Andrievsky, B.R., Blekhman, I.I., Blekhman, L.I., Boikov, V.I., Vasil’kov, V.B., Fradkov, A.L. (2016). Education and research mechatronic complex for studying vibration devices and processes. Problems of Mechanical Engineering and Reliability of Machines, 4, 90-97 DOI: https://doi.org/10.3103/S1052618816030031

6. Hashemnia, K., Mohajerani, A., & Spelt, J. K. (2013). Development of a laser displacement probe to measure particle impact velocities in vibrationally fluidized granular flows. Powder Technology, 235, 940-952. https://doi.org/10.1016/j.powtec.2012.12.001 DOI: https://doi.org/10.1016/j.powtec.2012.12.001

7. Hashimoto, F., Johnson, S. P., & Chaudhari, R. G. (2016). Modeling of material removal mechanism in vibratory finishing process. CIRP Annals, 65(1), 325-328. https://doi.org/10.1016/j.cirp.2016.04.011 DOI: https://doi.org/10.1016/j.cirp.2016.04.011

8. Fleischhauer, E., Azimi, F., Tkacik, P., Keanini, R., & Mullany, B. (2016). Application of particle image velocimetry (PIV) to vibrational finishing. Journal of Materials Processing Technology, 229, 322-328. https://doi.org/10.1016/j.jmatprotec.2015.09.017 DOI: https://doi.org/10.1016/j.jmatprotec.2015.09.017

9. Mullany, B., Shahinian, H., Navare, J., Azimi, F., Fleischhauer, E., & Tkacik, P. (2017). The application of computational fluid dynamics to vibratory finishing processes. CIRP Annals, 66(1), 309-312. https://doi.org/10.1016/j.cirp.2017.04.087 DOI: https://doi.org/10.1016/j.cirp.2017.04.087

10. Tian, Y. B., Zhong, Z. W., & Tan, S. J. (2016). Kinematic analysis and experimental investigation on vibratory finishing. The International Journal of Advanced Manufacturing Technology, 86(9-12), 3113-3121. https://doi.org/10.1007/s00170-016-8378-x DOI: https://doi.org/10.1007/s00170-016-8378-x

11. Kang, Y. S., Hashimoto, F., Johnson, S. P., & Rhodes, J. P. (2017). Discrete element modeling of 3D media motion in vibratory finishing process. CIRP Annals, 66(1), 313-316. https://doi.org/10.1016/j.cirp.2017.04.092 DOI: https://doi.org/10.1016/j.cirp.2017.04.092

12. Serdyuk L. The controlled vibromachines / L. Serdyuk // Jubilee scientific conferens. University of architecture, civil ingineering and geodezy. – Sofia : UACIG, 2007. – P. 43 – 48.

13. Zhygilii, S. M., & Dyachenko, K. S. (2012). Investigation of the dynamics of the unbalanced shaft of the controlled vibration exciter UVV-03. Collection of Scientific Works. Series: Industry Engineering, Construction, Poltava National Technical University, 2012, Issue 2 (32), pp. 159-164

14. Korobko, B.О., Bugrov, D.Yu. (2024). Development of a setup for vibratory abrasive treatment of surfaces of decorative elements with an active working tool. Vibrations in engineering and technology, 2024(1), 1-10. https://doi.org/10.37128/2306-8744-2024-1-1 DOI: https://doi.org/10.37128/2306-8744-2024-1-1

Downloads

Published

2023-12-21

How to Cite

Buhrov, D., & Buhrova, T. (2023). Сalculation of optimal parameters for a vibratory finishing machine for decorative elements with an active working tool. Academic Journal Industrial Machine Building Civil Engineering, 2(61), 52–59. https://doi.org/10.26906/znp.2023.61.3853
Received 2025-07-08
Published 2023-12-21

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.