Динамічне управління інфраструктурними ризиками: практичне впровадження та валідація IRMM на прикладі Mastergaz

Автор(и)

DOI:

https://doi.org/10.26906/EiR.2025.2(97).3797

Ключові слова:

управління інфраструктурними ризиками, індекс інфраструктурного ризику, динамічна оцінка, превентивне планування, дані в реальному часі, управління проєктами, Mastergaz

Анотація

В статті представлено та оцінено Метод управління інфраструктурними ризиками (IRMM) з особливою увагою до Індексу інфраструктурного ризику (IRI) як кількісного показника для ідентифікації та пом'якшення ризиків у рамках інфраструктурних проєктів. Дослідження базується на дворічному кейсі компанії Mastergaz — провідної інфраструктурної фірми, в межах якого проаналізовано 50 проєктів із різними рівнями складності та бюджетом до 100 000 доларів США. Проєкти було розподілено на три основні категорії: обслуговування багатоквартирних будинків, сервісне обслуговування комунальних систем та модернізація інфраструктури. Збір даних здійснювався за допомогою структурованих інтерв'ю та анкетування керівників проєктів і технічного персоналу, а також через аналіз історичної документації та показників продуктивності. Розрахунок IRI здійснювався шляхом інтеграції показників критичності (c_i), вразливості (v_i) та зовнішніх впливів (e_i) за формулою ir = sum(i=1 to n)(c_i * v_i * e_i), що дозволило отримати комплексну оцінку ризиків для кожного елемента інфраструктури. Результати показали сильну кореляцію між значеннями IRI та фактичними випадками відмов, що підтверджує прогностичну здатність IRMM. Впровадження методу призвело до зниження кількості аварійних викликів на 30-33% у всіх категоріях проєктів та зменшення частоти відмов на 20% у багатоквартирних будинках і на 15% у комунальних системах. Інтеграція з платформою ERP-BPMS BOS CIS забезпечила динамічний моніторинг у реальному часі та оперативне коригування параметрів ризику. На відміну від статичних методів, таких як моделювання Монте-Карло чи Аналітичний мережевий процес (ANP), IRMM забезпечує баланс між глибиною аналізу та практичною доступністю, не вимагаючи значних обчислювальних ресурсів. Виявлено потенціал масштабування методу в інших галузях, зокрема в транспорті та енергетиці. Метод пропонує структурований, але гнучкий підхід до управління ризиками, який поєднує автоматизований аналіз з експертною оцінкою, що особливо важливо для організацій зі складними ризиковими профілями. Такий динамічний, проактивний підхід підсилює якість прийняття рішень і стійкість в умовах змінного операційного середовища, створюючи підґрунтя для подальших досліджень і практичного застосування.

Біографії авторів

Юрій Черненко, Міжнародний університет бізнесу і права

кандидат технічних наук, докторант кафедри менеджменту

Олена Бєлова, Університет економіки та права «КРОК»

кандидат економічних наук, доцент кафедри маркетингу та поведінкової економіки

Олександр Бєлов, Університет економіки та права «КРОК»

аспірант кафедри управлінських технологій

Посилання

1. Wang J., Yuan H. (2016). System dynamics approach for investigating the risk effects on schedule delay in infrastructure projects. Journal of Management in Engineering, no. 33(1). DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000472

2. Cavalieri F., Franchin P. (2020). Seismic risk of infrastructure systems with treatment of and sensitivity to epistemic uncertainty. Infrastructures, no. 5(11). DOI: https://doi.org/10.3390/infrastructures5110103

3. Kabir S., Papadopoulos Y. (2019). Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Safety Science, no. 115, pp. 154–175. DOI: https://doi.org/10.1016/j.ssci.2019.02.009

4. Cheimonidis P., Rantos K. (2023). Dynamic risk assessment in cybersecurity: A systematic literature review. Future Internet, no. 15(10). DOI: https://doi.org/10.3390/fi15100324

5. Villa V., Paltrinieri N., Khan F., Cozzani V. (2016). Towards dynamic risk analysis: A review of the risk assessment approach and its limitations in the chemical process industry. Safety Science, no. 89, pp. 77–93. DOI: https://doi.org/10.1016/j.ssci.2016.06.002

6. De Felice F., Petrillo A., Baffo I. (2022). Critical infrastructures overview: Past, present and future. Sustainability, no. 14(4). DOI: https://doi.org/10.3390/su14042233

7. Gunawan I., Hallo L., Nguyen T. (2018). A review of methods, tools and techniques used for risk management in transport infrastructure projects. Proceedings of the 2018 IEEE International Conference on Industrial Engineering and Engineering Management, pp. 641–645. DOI: https://doi.org/10.1109/ieem.2018.8607553

8. Mottahedi A., Barabadi A., Ataei M., Nouri Qarahasanlou A., Sereshki F. (2021). The resilience of critical infrastructure systems: A systematic literature review. Energies, no. 14(6). DOI: https://doi.org/10.3390/en14061571

9. Rasheed N., Shahzad W., Khalfan M., Rotimi J. (2022). Risk identification, assessment, and allocation in PPP projects: A systematic review. Buildings, no. 12(8). DOI: https://doi.org/10.3390/buildings12081109

10. Urbina O., Sousa H., Teixeira E., Matos J. (2021). Risk management and criticality ranking of civil infrastructures – case study. IABSE Congress Ghent 2021: Structural Engineering for Future Societal Needs, no. 20, pp. 1779–1788. DOI: https://doi.org/10.2749/ghent.2021.1779

11. Secundo G., Mele G., Passiante G., Ligorio A. (2023). How machine learning changes project risk management: A structured literature review and insights for organizational innovation. European Journal of Innovation Management, no. 27(8), pp. 2597–2622. DOI: https://doi.org/10.1108/ejim-11-2022-0656

12. Wang Y., Gong E., Zhang Y., Yao Y., Zhou X. (2023). Risk assessment of infrastructure REITs projects based on cloud model: A case study of China. Engineering, Construction and Architectural Management, no. 31(11), pp. 4330–4352. DOI: https://doi.org/10.1108/ecam-12-2022-1142

13. Ward E. J. (2020). Mega infrastructure and strategic risk mitigation: Planning, management and outcomes. Journal of Mega Infrastructure & Sustainable Development, no. 2, pp. 5–31. DOI: https://doi.org/10.1080/24724718.2022.2035553

14. Li W., Yuan J., Ji C., Wei S., Li Q. (2021). Agent-based simulation model for investigating the evolution of social risk in infrastructure projects in China: A social network perspective. Sustainable Cities and Society, no. 73. DOI: https://doi.org/10.1016/j.scs.2021.103112

15. Xia N., Yang Q., Liu X., Wang X., Wang Y. (2017). Lifecycle cost risk analysis for infrastructure projects with modified Bayesian networks. Journal of Engineering, Design and Technology, no. 15(1), pp. 79–103. DOI: https://doi.org/10.1108/jedt-05-2015-0033

16. Weng X., Li X., Li H., Yuan C. (2024). Research on the construction of a risk assessment indicator system for transportation infrastructure investment under public–private partnership model. Buildings, no. 14(6). DOI: https://doi.org/10.3390/buildings14061679

17. Ahmed I., Debray T. P., Riley R. D., Moons K. G. (2014) Developing and validating risk prediction models in an individual participant data meta-analysis. BMC Medical Research Methodology, no. 14(1). DOI: https://doi.org/10.1186/1471-2288-14-3

18. Pasino A., Clematis A., Ottonello D., De Angeli S., Battista U. (2021) A review of single and multi-hazard risk assessment approaches for critical infrastructures protection. International Journal of Safety and Security Engineering, no. 11(4), pp. 305–318. DOI: https://doi.org/10.18280/ijsse.110403

19. Navarro I. J., Yepes V., Martí J. V. (2019) A review of multicriteria assessment techniques applied to sustainable infrastructure design. Advances in Civil Engineering, no. 2019(1), pp. 1–16. DOI: https://doi.org/10.1155/2019/6134803

20. Maghsoudi S., Duffield C., Wilson D. (2015) Innovation evaluation: Past and current models and a framework for infrastructure projects. International Journal of Innovation Science, no. 7(4), pp. 281–297. DOI: https://doi.org/10.1108/ijis-07-04-2015-b005

21. Senić A., Stojadinović Z., Dobrodolac M. (2024) Development of risk quantification models in road infrastructure projects. Sustainability, no. 16(17). DOI: https://doi.org/10.3390/su16177694

22. Nabawy M., Khodeir L. M. (2020) Achieving efficiency in quantitative risk analysis process – Application on infrastructure projects. Ain Shams Engineering Journal, no. 12(2), pp. 2303–2311. DOI: https://doi.org/10.1016/j.asej.2020.07.032

23. Nguyen M. D., Nguyen H. B., Tran P. Q. (2023) An application of analytic network process (ANP) to assess critical risks of bridge projects in the Mekong Delta Region. Engineering, Technology & Applied Science Research, no. 13(3), pp. 10622–10629. DOI: https://doi.org/10.48084/etasr.5802

24. Di Bona G., Forcina A., Falcone D., Silvestri L. (2020) Critical risks method (CRM): A new safety allocation approach for a critical infrastructure. Sustainability, no. 12(12). DOI: https://doi.org/10.3390/su12124949

25. Umar M., Akande D., Okwandu A. (2024) Innovations in project monitoring tools for large-scale infrastructure projects. International Journal of Management & Entrepreneurship Research, no. 6(7), pp. 2275–2291. DOI: https://doi.org/10.51594/ijmer.v6i7.1294

26. Larsson A., Große C. (2023) Data use and data needs in critical infrastructure risk analysis. Journal of Risk Research, no. 26(5), pp. 524–546. DOI: https://doi.org/10.1080/13669877.2023.2181858

27. Papadaki E., Kotsiantis S., Vrahatis A. G. (2024) Exploring innovative approaches to synthetic tabular data generation. Electronics, no. 13(10). DOI: https://doi.org/10.3390/electronics13101965

28. Basri E. I., Kamaruddin S., Ab-Samat H., Abdul Razak I. H. (2017) Preventive maintenance (PM) planning: A review. Journal of Quality in Maintenance Engineering, no. 23(2), pp. 114–143. DOI: https://doi.org/10.1108/jqme-04-2016-0014

29. Wu S., Zuo M. J. (2010) Linear and nonlinear preventive maintenance models. IEEE Transactions on Reliability, no. 59(1), pp. 242–249. DOI: https://doi.org/10.1109/tr.2010.2041972

30. Babayeju O., Ekemezie I., Sofoluwe O., Adefemi A. (2024) Advancements in predictive maintenance for aging oil and gas infrastructure. World Journal of Advanced Research and Reviews, no. 22(3), pp. 252–266. DOI: https://doi.org/10.30574/wjarr.2024.22.3.1669

31. Figueredo G., Owa K., John R. (2020) Multi-objective optimization for time-based preventive maintenance within the transport network: A review. ResearchGate. DOI: https://doi.org/10.13140/rg.2.2.36132.01929

32. Abdullah E. M. E., Abdullah M. H. S. B., Yakob R. (2024) A comprehensive review of enterprise risk management on higher education institutions performance. Asia Proceedings of Social Sciences, no. 12(1), pp. 20–24. DOI: https://doi.org/10.31580/rf6td074

33. Solano M. C., Cruz J. C. (2024) Integrating analytics in enterprise systems: A systematic literature review of impacts and innovations. Administrative Sciences, no. 14(7). DOI: https://doi.org/10.3390/admsci14070138

34. Wijesinghe S., Pathirana R., Nanayakkara I., Wickramarachchi R., Fernando I. (2024) Impact of IoT integration on enterprise resource planning (ERP) systems: A comprehensive literature analysis. Proceedings of the 2024 International Research Conference on Smart Computing and Systems Engineering (SCSE), pp. 1–5. DOI: https://doi.org/10.1109/scse61872.2024.10550684

35. Samad M. A., Uddin S. M., Sabbir M. M., Rahman M. (2023) Enhancing organizational performance in Bangladeshi industries: The role of enterprise resource planning (ERP) systems. Asian Review of Mechanical Engineering, no. 12(2), pp. 19–27. DOI: https://doi.org/10.70112/arme-2023.12.2.4224

1. Wang J., Yuan H. System dynamics approach for investigating the risk effects on schedule delay in infrastructure projects. Journal of Management in Engineering. 2016. Vol. 33, No. 1. DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000472 DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000472

2. Cavalieri F., Franchin P. Seismic risk of infrastructure systems with treatment of and sensitivity to epistemic uncertainty. Infrastructures. 2020. Vol. 5. No. 11. DOI: https://doi.org/10.3390/infrastructures5110103 DOI: https://doi.org/10.3390/infrastructures5110103

3. Kabir S., Papadopoulos Y. Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Safety Science. 2019. Vol. 115. P. 154–175. DOI: https://doi.org/10.1016/j.ssci.2019.02.009 DOI: https://doi.org/10.1016/j.ssci.2019.02.009

4. Cheimonidis P., Rantos K. Dynamic risk assessment in cybersecurity: A systematic literature review. Future Internet. 2023. Vol. 15. No. 10. DOI: https://doi.org/10.3390/fi15100324 DOI: https://doi.org/10.3390/fi15100324

5. Villa V., Paltrinieri N., Khan F., Cozzani V. Towards dynamic risk analysis: A review of the risk assessment approach and its limitations in the chemical process industry. Safety Science. 2016. Vol. 89. P. 77–93. DOI: https://doi.org/10.1016/j.ssci.2016.06.002 DOI: https://doi.org/10.1016/j.ssci.2016.06.002

6. De Felice F., Petrillo A., Baffo I. Critical infrastructures overview: Past, present and future. Sustainability. 2022. Vol. 14. No. 4. DOI: https://doi.org/10.3390/su14042233 DOI: https://doi.org/10.3390/su14042233

7. Gunawan I., Hallo L., Nguyen T. A review of methods, tools and techniques used for risk management in transport infrastructure projects. Proceedings of the 2018 IEEE International Conference on Industrial Engineering and Engineering Management. 2018. P. 641–645. DOI: https://doi.org/10.1109/ieem.2018.8607553 DOI: https://doi.org/10.1109/IEEM.2018.8607553

8. Mottahedi A., Barabadi A., Ataei M., Nouri Qarahasanlou A., Sereshki F. The resilience of critical infrastructure systems: A systematic literature review. Energies. 2021. Vol. 14. No. 6. DOI: https://doi.org/10.3390/en14061571 DOI: https://doi.org/10.3390/en14061571

9. Rasheed N., Shahzad W., Khalfan M., Rotimi J. Risk identification, assessment, and allocation in PPP projects: A systematic review. Buildings. 2022. Vol. 12. No. 8. DOI: https://doi.org/10.3390/buildings12081109 DOI: https://doi.org/10.3390/buildings12081109

10. Urbina O., Sousa H., Teixeira E., Matos J. Risk management and criticality ranking of civil infrastructures – case study. IABSE Congress Ghent 2021: Structural Engineering for Future Societal Needs. 2021. Vol. 20. P. 1779–1788. DOI: https://doi.org/10.2749/ghent.2021.1779 DOI: https://doi.org/10.2749/ghent.2021.1779

11. Secundo G., Mele G., Passiante G., Ligorio A. How machine learning changes project risk management: A structured literature review and insights for organizational innovation. European Journal of Innovation Management. 2023. Vol. 27. No. 8. P. 2597–2622. DOI: https://doi.org/10.1108/ejim-11-2022-0656 DOI: https://doi.org/10.1108/EJIM-11-2022-0656

12. Wang Y., Gong E., Zhang Y., Yao Y., Zhou X. Risk assessment of infrastructure REITs projects based on cloud model: A case study of China. Engineering, Construction and Architectural Management. 2023. Vol. 31. No. 11. P. 4330–4352. DOI: https://doi.org/10.1108/ecam-12-2022-1142 DOI: https://doi.org/10.1108/ECAM-12-2022-1142

13. Ward E. J. Mega infrastructure and strategic risk mitigation: Planning, management and outcomes. Journal of Mega Infrastructure & Sustainable Development. 2020. Vol. 2. P. 5–31. DOI: https://doi.org/10.1080/24724718.2022.2035553 DOI: https://doi.org/10.1080/24724718.2022.2035553

14. Li W., Yuan J., Ji C., Wei S., Li Q. Agent-based simulation model for investigating the evolution of social risk in infrastructure projects in China: A social network perspective. Sustainable Cities and Society. 2021. Vol. 73. DOI: https://doi.org/10.1016/j.scs.2021.103112 DOI: https://doi.org/10.1016/j.scs.2021.103112

15. Xia N., Yang Q., Liu X., Wang X., Wang Y. Lifecycle cost risk analysis for infrastructure projects with modified Bayesian networks. Journal of Engineering, Design and Technology. 2017. Vol. 15. No. 1. P. 79–103. DOI: https://doi.org/10.1108/jedt-05-2015-0033 DOI: https://doi.org/10.1108/JEDT-05-2015-0033

16. Weng X., Li X., Li H., Yuan C. Research on the construction of a risk assessment indicator system for transportation infrastructure investment under public–private partnership model. Buildings. 2024. Vol. 14. No. 6. DOI: https://doi.org/10.3390/buildings14061679 DOI: https://doi.org/10.3390/buildings14061679

17. Ahmed I., Debray T. P., Riley R. D., Moons K. G. Developing and validating risk prediction models in an individual participant data meta-analysis. BMC Medical Research Methodology. 2014. Vol. 14. No. 1. DOI: https://doi.org/10.1186/1471-2288-14-3 DOI: https://doi.org/10.1186/1471-2288-14-3

18. Pasino A., Clematis A., Ottonello D., De Angeli S., Battista U. A review of single and multi-hazard risk assessment approaches for critical infrastructures protection. International Journal of Safety and Security Engineering. 2021. Vol. 11. No. 4. P. 305–318. DOI: https://doi.org/10.18280/ijsse.110403 DOI: https://doi.org/10.18280/ijsse.110403

19. Navarro I. J., Yepes V., Martí J. V. A review of multicriteria assessment techniques applied to sustainable infrastructure design. Advances in Civil Engineering. 2019. Vol. 2019. No. 1. P. 1–16. DOI: https://doi.org/10.1155/2019/6134803 DOI: https://doi.org/10.1155/2019/6134803

20. Maghsoudi S., Duffield C., Wilson D. Innovation evaluation: Past and current models and a framework for infrastructure projects. International Journal of Innovation Science. 2015. Vol. 7. No. 4. P. 281–297. DOI: https://doi.org/10.1108/ijis-07-04-2015-b005 DOI: https://doi.org/10.1108/IJIS-07-04-2015-B005

21. Senić A., Stojadinović Z., Dobrodolac M. Development of risk quantification models in road infrastructure projects. Sustainability. 2024. Vol. 16. No. 17. DOI: https://doi.org/10.3390/su16177694 DOI: https://doi.org/10.3390/su16177694

22. Nabawy M., Khodeir L. M. Achieving efficiency in quantitative risk analysis process – Application on infrastructure projects. Ain Shams Engineering Journal. 2020. Vol. 12. No. 2. P. 2303–2311. DOI: https://doi.org/10.1016/j.asej.2020.07.032 DOI: https://doi.org/10.1016/j.asej.2020.07.032

23. Nguyen M. D., Nguyen H. B., Tran P. Q. An application of analytic network process (ANP) to assess critical risks of bridge projects in the Mekong Delta Region. Engineering, Technology & Applied Science Research. 2023. Vol. 13. No. 3. P. 10622–10629. DOI: https://doi.org/10.48084/etasr.5802 DOI: https://doi.org/10.48084/etasr.5802

24. Di Bona G., Forcina A., Falcone D., Silvestri L. Critical risks method (CRM): A new safety allocation approach for a critical infrastructure. Sustainability. 2020. Vol. 12. No. 12. DOI: https://doi.org/10.3390/su12124949 DOI: https://doi.org/10.3390/su12124949

25. Umar M., Akande D., Okwandu A. Innovations in project monitoring tools for large-scale infrastructure projects. International Journal of Management & Entrepreneurship Research. 2024. Vol. 6. No. 7. P. 2275–2291. DOI: https://doi.org/10.51594/ijmer.v6i7.1294 DOI: https://doi.org/10.51594/ijmer.v6i7.1294

26. Larsson A., Große C. Data use and data needs in critical infrastructure risk analysis. Journal of Risk Research. 2023. Vol. 26. No. 5. P. 524–546. DOI: https://doi.org/10.1080/13669877.2023.2181858 DOI: https://doi.org/10.1080/13669877.2023.2181858

27. Papadaki E., Kotsiantis S., Vrahatis A. G. Exploring innovative approaches to synthetic tabular data generation. Electronics. 2024. Vol. 13. No. 10. DOI: https://doi.org/10.3390/electronics13101965 DOI: https://doi.org/10.3390/electronics13101965

28. Basri E. I., Kamaruddin S., Ab-Samat H., Abdul Razak I. H. Preventive maintenance (PM) planning: A review. Journal of Quality in Maintenance Engineering. 2017. Vol. 23. No. 2. P. 114–143. DOI: https://doi.org/10.1108/jqme-04-2016-0014 DOI: https://doi.org/10.1108/JQME-04-2016-0014

29. Wu S., Zuo M. J. Linear and nonlinear preventive maintenance models. IEEE Transactions on Reliability. 2010. Vol. 59. No. 1. P. 242–249. DOI: https://doi.org/10.1109/tr.2010.2041972 DOI: https://doi.org/10.1109/TR.2010.2041972

30. Babayeju O., Ekemezie I., Sofoluwe O., Adefemi A. Advancements in predictive maintenance for aging oil and gas infrastructure. World Journal of Advanced Research and Reviews. 2024. Vol. 22. No. 3. P. 252–266. DOI: https://doi.org/10.30574/wjarr.2024.22.3.1669 DOI: https://doi.org/10.30574/wjarr.2024.22.3.1669

31. Figueredo G., Owa K., John R. Multi-objective optimization for time-based preventive maintenance within the transport network: A review. Preprint on ResearchGate. 2020. DOI: https://doi.org/10.13140/rg.2.2.36132.01929

32. Abdullah E. M. E., Abdullah M. H. S. B., Yakob R. A comprehensive review of enterprise risk management on higher education institutions performance. Asia Proceedings of Social Sciences. 2024. Vol. 12. No. 1. P. 20–24. DOI: https://doi.org/10.31580/rf6td074 DOI: https://doi.org/10.31580/rf6td074

33. Solano M. C., Cruz J. C. Integrating analytics in enterprise systems: A systematic literature review of impacts and innovations. Administrative Sciences. 2024. Vol. 14. No. 7. DOI: https://doi.org/10.3390/admsci14070138 DOI: https://doi.org/10.3390/admsci14070138

34. Wijesinghe S., Pathirana R., Nanayakkara I., Wickramarachchi R., Fernando I. Impact of IoT integration on enterprise resource planning (ERP) systems: A comprehensive literature analysis. Proceedings of the 2024 International Research Conference on Smart Computing and Systems Engineering (SCSE). 2024. P. 1–5. DOI: https://doi.org/10.1109/scse61872.2024.10550684 DOI: https://doi.org/10.1109/SCSE61872.2024.10550684

35. Samad M. A., Uddin S. M., Sabbir M. M., Rahman M. Enhancing organizational performance in Bangladeshi industries: The role of enterprise resource planning (ERP) systems. Asian Review of Mechanical Engineering. 2023. Vol. 12. No. 2. P. 19–27. DOI: https://doi.org/10.70112/arme-2023.12.2.4224 DOI: https://doi.org/10.70112/arme-2023.12.2.4224

Downloads

Опубліковано

2025-06-24

Як цитувати

Черненко, Ю., Бєлова, О., & Бєлов, О. (2025). Динамічне управління інфраструктурними ризиками: практичне впровадження та валідація IRMM на прикладі Mastergaz. Економіка і регіон Economics and Region, (2(97), 130–138. https://doi.org/10.26906/EiR.2025.2(97).3797

Номер

Розділ

ЕКОНОМІКА ТА УПРАВЛІННЯ ПІДПРИЄМСТВАМИ