Минеральная комплексная добавка для бетона

Автор(и)

DOI:

https://doi.org/10.26906/znp.2024.62.3479

Ключові слова:

добавки–прискорювачі твердіння цементу, затравки кристалізації, квасці сульфатні

Анотація

Розглянуто способи прискорення тверднення портландцементу без застосування тепловологісної обробки, з використанням комплексних хімічних добавок–прискорювачів тверднення та тонкодисперсних центрів кристалізації. Встановлено доцільність поєднання кількох технологічних прийомів, зокрема хімічного впливу, введення попередньо гідратованого цементу як активного мінерального наповнювача, а також використання повторного вібрування після першої стадії структурування. Дослідження поділено на кілька стадій, у межах яких проведено понад 120 експериментів з різними варіантами добавок та їх поєднань. Вивчено дію одно- та багатокомпонентних комплексних добавок, до складу яких входили хлориди, нітрити, сульфати, залізо-, калій- та натрійвмісні сполуки, а також надпластифікатор С-3. Виявлено оптимальні комбінації компонентів, які забезпечують прискорене тверднення цементного тіста без погіршення фізико-механічних характеристик. Окремо досліджено вплив тонкодисперсних центрів кристалізації, зокрема попередньо гідратованого портландцементу, який виконує функцію структурного ініціатора в період індукційного сповільнення гідратації. Показано, що поєднання мінеральних центрів кристалізації з комплексними хімічними добавками забезпечує приріст міцності цементного каменю вже на першу добу в 1,6–1,8 рази порівняно з контрольними зразками без добавок. Запропоновано рекомендовані склади добавок для цементів різних типів (ПЦ 42,5; ПЦ-Ш 32,5), які дозволяють скоротити тривалість технологічного циклу тверднення та досягти енергозберігаючого ефекту у виробництві бетонних та залізобетонних конструкцій.

Посилання

1. Lenyk V. B. Research on the influence of hardening accelerators on the strength of concrete: master's thesis in the specialty "192 - construction and civil engineering" / V. B. Lenyk. - Ternopil: TNTU, 2021. - 63 p.

2. Chistyakov V. V. Modified cement concrete for road coating / V. V. Chistyakov, Shurgaia A.G., Doroshenko Yu.M.,. Chyzhenko N.P., Kabus A. V,. Koval L. B // Building materials, products and sanitary ware. - 2012. - Issue 43. - P. 212-216. - Access mode: http://nbuv.gov.ua/UJRN/bmvs_2012_43_38.

3. Kalyuzhna O.V. Increasing the early strength of concrete of reinforced concrete sleepers with complex additives./Dissertation. 192 Construction and Civil Engineering. Ukrainian State University of Railway Transport. Kharkiv 2021

4. Possibilities of the Using of Drilling Mud in Road Construction Demchenko O., Shulhin V., Ilchenko V., Uzhviieva E. Lecture Notes in Intelligent Transportation and Infrastructure, 2023, Part F1379, pp. 354–364 https://doi.org/10.1007/978-3-031-25863-3_33 DOI: https://doi.org/10.1007/978-3-031-25863-3_33

5. Sanytsky M. Design of rapid hardening quaternary zeolite-containing Portland-composite cements./ Kropyvnytska T., Kruts T., Horpynko O., Geviuk I. // Key Engineering Materials. 761 (2018) 193-196. DOI: 10.4028/www.scientific.net/KEM.761.193. DOI: https://doi.org/10.4028/www.scientific.net/KEM.761.193

6. Plugin A.A. The influence of additives of superplasticizers and hardening accelerators on the kinetics of strength gain by cement stone. / Romanenko O.V., Kalinin O.A., Plugin O.A., Afanasyev O.V. // Bulletin of NTU "KhPI", 1130 (21) (2015) 14-22.

7. Marushchak U Nanomodified Portland cement compositions with alkaline activation./SanytskyM., Mazurak T., Olevych Y./ Budownictwo o zoptymalizovanym potenciale energetycznym:// Praca zbiorova. 2(18) (2016) 119– 128 DOI: https://doi.org/10.17512/bozpe.2016.2.09

8. Rapin, J.P. Structual transition of Friedel’s salt 3CaO·Al2O3·CaCl2·10H2O studied by synchrotron powder diffraction. / Elkaim, E., Francois, M., Renaudin, G.// Cement and Concrete Research 2002. 32: p. 513-519. DOI: https://doi.org/10.1016/S0008-8846(01)00716-5

9. Modified high-strength concretes for the recon-struction of engineering structures and networks, roads / L. M. Ksyonshkevych et al. Modern technologies and calculation methods in construction. 2023. No. 18. P. 52–60. URL: https://doi.org/10.36910/6775-2410-6208-2022-8(18)-07

10. Effect of Water-Binder Ratio and Complex Or-ganic-Mineral Additive on Properties of Concrete for Marine Hydrotechnical Constructions. (2019). Promyshlennoe i Grazhdanskoe Stroitel’stvo, 3, 11–21. https://doi.org/10.33622/0869-7019.2019.03.11-21 DOI: https://doi.org/10.33622/0869-7019.2019.03.11-21

11. Günaydın, O., Güçlüer, K., & Akçaözoğlu, K. (2017). An Investigation of Mechanical Properties and Microstructures of Mineral Additive Concrete. 2017 UBT International Conference. https://doi.org/10.33107/ubt-ic.2017.53 DOI: https://doi.org/10.33107/ubt-ic.2017.53

12. Kubiliute, R., Kaminskas, R., & Kazlauskaite, A. (2018). Mineral wool production waste as an additive for Portland cement. Cement and Concrete Compo-sites, 88, 130–138. https://doi.org/10.1016/j.cemconcomp.2018.02.003 DOI: https://doi.org/10.1016/j.cemconcomp.2018.02.003

13. Rakhimbaev, S. M., Logvinenko, A. A., & Logvinenko, M. I. (2020). Mechanism of Interaction between Concrete Cement Matrix and Mineral Additive Particles. Materials Science Forum, 992, 98–103. https://doi.org/10.4028/www.scientific.net/msf.992.98 DOI: https://doi.org/10.4028/www.scientific.net/MSF.992.98

14. Kurdowski, W. (2019). Limestone meal as active mineral additive for production of aerated autoclaved concrete. Cement Wapno Beton, 24(2), 154–160. https://doi.org/10.32047/cwb.2019.24.2.7 DOI: https://doi.org/10.32047/CWB.2019.24.2.7

15. Effects of mineral admixtures on durability of concrete. (2016). Cement and Concrete Mineral Admixtures, 176–221. https://doi.org/10.1201/b20093-14 DOI: https://doi.org/10.1201/b20093-14

16. International standards on mineral admixtures in cement and concrete. (2016). Cement and Concrete Mineral Admixtures, 240–253. https://doi.org/10.1201/b20093-16 DOI: https://doi.org/10.1201/b20093-16

17. Tiurina, L. E. (2021). Influence of a mineral complex additive on the incubation qualities of eggs. Bulletin of ksau, 4, 99–104. https://doi.org/10.36718/1819-4036-2021-4-99-104 DOI: https://doi.org/10.36718/1819-4036-2021-4-99-104

18. Li, L. G., Kwan, A. K. H. (2015). Adding limestone fines as cementitious paste replacement to improve tensile strength, stiffness and durability of concrete. Cement and Concrete Composites, 60, 17–24. doi: 10.1016/j.cemconcomp.2015.02.006 DOI: https://doi.org/10.1016/j.cemconcomp.2015.02.006

19. Karpikov, E. G., Lukutsova, N. P., Bondarenko, E. A., Klyonov, V. V., & Zajcev, A. E. (2019). Effective Fine-Grained Concrete with High-Dispersed Additive Based on the Natural Mineral Wollastonite. Materials Science Forum, 945, 85–90. https://doi.org/10.4028/www.scientific.net/msf.945.85 DOI: https://doi.org/10.4028/www.scientific.net/MSF.945.85

20. Rozhin, V. N. (2020). Portland cement foam concrete with a zeolite-containing mineral additive. IOP Conference Series: Materials Science and Engineering, 945(1), 012023. https://doi.org/10.1088/1757-899x/945/1/012023 DOI: https://doi.org/10.1088/1757-899X/945/1/012023

21. He, Z., Hu, L., Li, Y., Hu, J., & Shao, Y. (2018). Use of sandstone powder as a mineral additive for concrete. Construction and Building Materials, 186, 276–286. https://doi.org/10.1016/j.conbuildmat.2018.06.228 DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.228

22. Modified high-strength concretes for the reconstruction of engineering structures and networks, roads / L. M. Ksyonshkevych et al. Modern technologies and calculation methods in construction. 2023. No. 18. P. 52–60. URL: https://doi.org/10.36910/6775-2410-6208-2022-8(18)-07

23. Pushkareva K.K. Features of cement matrix modification for obtaining high-strength lightweight expanded clay concretes / Pushkareva K.K., Gonchar O.A., Kaverin K.O. // Collection of scientific works “Building materials, products and sanitary ware” No. 52 – 2014. Kyiv – pp. 43-48.

24. Pushkareva K.K. Research on the processes of structure formation of cement compositions modified with organo-silica additives / Pushkareva K.K., Kaverin K.O., Dmytrov M.S. // Bulletin of the Odessa State Academy of Civil Engineering and Architecture No. 56 – 2014. Odesa – pp. 201-208.

25. Modified high-strength concretes for the reconstruction of engineering structures and networks, roads / L. M. Ksyonshkevych et al. Modern technologies and calculation methods in construction. 2023. No. 18. P. 52–60. URL: https://doi.org/10.36910/6775-2410-6208-2022-8(18)-07 DOI: https://doi.org/10.36910/6775-2410-6208-2022-8(18)-07

26. Pushkareva K.K. Features of cement matrix modification for obtaining high-strength lightweight expanded clay concretes / Pushkareva K.K., Gonchar O.A., Kaverin K.O. // Collection of scientific works "Building materials, products and sanitary ware" No. 52 - 2014. Kyiv - pp. 43-48.

27. Pushkareva K.K. Research on the processes of structure formation of cement compositions modified with organo-silica additives / Pushkareva K.K., Kaverin K.O., Dmytrov M.S. // Bulletin of the Odessa State Academy of Civil Engineering and Architecture No. 56 - 2014. Odesa - pp. 201-208.

28. Dvorkin L., Zhitkovsky V., Bordiuzhenko O., Ribakov Y. High Рerformance Concrete Optimal Composition Desing CRC. Press Taylor and Frencis Group, London, New York, 2023. р.200.

29. Dvorkin, L., Zhitkovsky, V., Bordiuzhenko, O., & Ribakov, Y. (2023). High Performance Concrete Optimal Composition Design. https://doi.org/10.1201/9781003357865 DOI: https://doi.org/10.1201/9781003357865

30. Dvorkin, L., Zhitkovsky, V., Lushnikova, N., & Ribakov, Y. (2021). Metakaolin and Fly Ash as Mineral Admixtures for Concrete. https://doi.org/10.1201/9781003096825 DOI: https://doi.org/10.1201/9781003096825

31. Shulgin, V.V., Demchenko, O.V., Gukasian, O.M., Petrash, R.V. Increasing the water resistance of magnesium binders Iop Conference Series Materials Science and Engineering, 2019, 708(1), 012105 https://doi.org/10.1088/1757-899X/708/1/012105 DOI: https://doi.org/10.1088/1757-899X/708/1/012105

32. Dvorkin L.Y., Zhitkovsky V.V., Marchuk V.V., Stepasyuk Yu.O., Skrypnyk M.M. Effective technologies of concrete and mortars using technogenic raw materials Rivne: NUVGP, 2017. 424 p.

Downloads

Опубліковано

2024-06-26

Як цитувати

Ахмеднабієв, Р., Демченко, О., Ільченко, В., Гукасян, О., Гасанов , Е., & Лихач , Д. (2024). Минеральная комплексная добавка для бетона. Збірник наукових праць Галузеве машинобудування будівництво, 1(62), 5–12. https://doi.org/10.26906/znp.2024.62.3479
Received 2024-10-10
Published 2024-06-26

Схожі статті

1 2 3 > >> 

Ви також можете розпочати розширений пошук схожих статей для цієї статті.