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Strain Energy Density-Based Topology Optimization Using SIMP and  
Local Failure Criteria for 3D-Printed Concrete Structures 

 
Abstract. This paper presents a strain energy density–based topology optimization method tailored for brittle materials such as 

3D-printed concrete. Extending the SIMP framework, the approach incorporates a local failure criterion derived from a Lode–

Nadai ultimate strain energy model, allowing each element to adapt to tension-, compression-, or shear-dominated stress states. 

A memory-locking mechanism preserves elements that exceed their local energy limits, preventing unstable material removal 

and improving structural robustness. The method is implemented in the FEniCS finite element environment, enabling full 

customization of material behavior and numerical routines. Benchmark simulations of a slab, cantilever beam, and foundation 

block demonstrate that the proposed strategy generates manufacturable, failure-resistant layouts and produces more physically 

consistent topologies than traditional compliance-based designs, particularly for materials with limited tensile capacity. 
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Introduction.  

Topology optimization has emerged as a powerful 

tool for designing high-performance structures by 

distributing material within a prescribed domain to 

achieve optimal mechanical behavior under given 

constraints. Among the various approaches, the Solid 

Isotropic Material with Penalization (SIMP) method is 

widely used due to its simplicity and ability to produce 

nearly discrete designs using continuous design 

variables [1,2]. However, conventional SIMP 

formulations primarily focus on compliance 

minimization, often neglecting the material's physical 

failure limits. 

This limitation becomes critical in applications 

involving brittle or quasi-brittle materials - such as 

concreteespecially when used in additive 

manufacturing processes. In such contexts, mechanical 

failure is governed not only by stress magnitudes but 

also by the distribution and concentration of energy 

within the structure. Incorporating local failure criteria 

based on strain energy density offers a more physically 

meaningful way to guide material redistribution [3-5]. 

Strain energy density (SED) represents the internal 

elastic energy stored per unit volume and can serve as 

a valuable indicator for material failure, particularly 

when contrasted with the material's ultimate energy 

absorption capacity. By formulating the optimization 

process around an energy-based failure criterion, it 

becomes possible to ensure that all material in the 

structure remains within safe operating limits, 

enhancing structural robustness and reliability [6,7]. 

Recent advances in numerical extremum-search 

algorithms also emphasize the importance of energy-

driven optimization principles. In particular, the 

improved Method of Integral Gradients (MIG) has 

demonstrated efficient procedures for locating global 
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extrema of multivariable functions [20,21], offering 

complementary perspectives that conceptually align 

with the strain-energy motivation adopted in this work. 

Other studies have shown the effectiveness of 

iterative approaches for optimizing reinforced concrete 

floor systems, including early work on slab topology 

rationalization presented in [19]. 

This paper proposes an energy-constrained SIMP 

topology optimization framework where the 

optimization is driven by the ratio between the actual 

strain energy density and a local ultimate energy 

threshold. The threshold is computed using a Lode–

Nadai-based formulation, where the ultimate energy is 

a function of the local deviatoric strain state. By using 

second-order polynomial interpolation of failure 

energies under uniaxial tension, compression, and pure 

shear, the model defines a continuous ultimate energy 

field that respects the material’s multiaxial failure 

behavior [8,9]. 

An important aspect of the proposed framework is 

the spatially varying nature of the failure criterion, 

which reflects the multiaxial stress state of the 

structure. Moreover, a filtering strategy and preserved 

region constraints are introduced to prevent the 

formation of disconnected voids, promoting 

manufacturable and physically realistic structures. The 

method is particularly suitable for emerging materials 

and fabrication processes, such as 3D-printed concrete, 

where stress redistribution and material efficiency are 

paramount [10–12]. 

To demonstrate the effectiveness of the method, we 

apply it to three structural case studies: a cantilever 

beam, a foundation block with constrained supports, 

and a simply supported slab subjected to surface loads. 

Each example highlights the influence of the energy-

based failure constraint on the topology evolution and 

final material layout. 

The remainder of this paper introduces the 

theoretical basis of the strain-energy-driven failure 

criterion together with the Lode–Nadai interpolation, 

followed by a description of the proposed SIMP-based 

optimization framework and its numerical 

implementation. The subsequent sections present the 

topology optimization results for the selected case 

studies and conclude with key findings and prospects 

for future research. 

 

Problem statement.  

This study addresses the limitations of conventional 

SIMP-based topology optimization by integrating 

strain energy density constraints derived from Lode-

Nadai strength theory. The goal is to ensure that each 

element remains within its mode-specific energy 

capacity while promoting structurally coherent and 

manufacturable designs. 

 

Main material and results.  

Overview and Physical Motivation. Topology 

optimization has become a fundamental tool in 

structural design, enabling the efficient distribution of 

material within a domain to maximize performance 

under constraints such as stiffness, mass, or 

manufacturing limits. While compliance minimization 

remains the prevailing objective in classical topology 

optimization [1], it often neglects local material failure 

risks. This is especially critical for brittle materials like 

3D-printed concrete, where strain localization and 

cracking may occur well before global failure. 

To address this, we propose a novel formulation of 

topology optimization that leverages local strain energy 

density as a governing criterion for material 

distribution. The method ensures that, throughout the 

optimization process, no element exceeds its allowable 

energy threshold derived from physically meaningful 

limits based on the Lode-Nadai failure model. This 

approach improves structural integrity by preventing 

weak internal zones and promoting manufacturable 

designs with well-defined stress trajectories [3,13]. 

The methodology is implemented using the SIMP 

(Solid Isotropic Material with Penalization) 

framework, enhanced with energy-based filtering and a 

memory mechanism to prevent reactivation of 

overloaded zones. The simulations are carried out using 

the open-source FEniCS computing platform [14], 

providing flexibility for integrating custom material 

models, solvers, and geometric definitions. 

Strain Energy Density as a Failure Measure. 

Strain energy density 𝑤 is an energy-based scalar field 

derived from the stress and strain tensors in the context 

of linear elasticity: 

 
1

:
2

w  = , (1) 

where 𝝈is the stress tensor and 𝜺the strain tensor. In 

topology optimization, the energy density provides a 

measure of local deformation and stress, making it a 

suitable candidate for evaluating the proximity to 

failure [15, 18]. 

To introduce failure sensitivity, we define a cell-

wise ultimate strain energy threshold 𝑒𝑢(𝜒), 

determined as a function of the Lode-Nadai parameter 

𝜒 ∈ [−1,1]. This parameter captures the nature of the 

stress state - whether it is closer to uniaxial tension, 

compression, or shear – via the deviatoric strain 

invariants: 
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We then define the energy threshold as a second-

order polynomial in 𝜒: 

 ( ) 2

1 2 3ue      = + + . (3) 

The coefficients 𝛼𝑖are computed from ultimate 

strain energies in three canonical stress states – uniaxial 

tension, uniaxial compression, and pure shear – using 

characteristic strengths of the 3D-printed concrete: 
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This framework creates a spatially adaptive failure 

criterion, ensuring elements are not removed if they 

carry critical structural loads, even under varying local 

stress modes [16]. 

Numerical Implementation in FEniCS. The 

proposed method is implemented using the FEniCS 

finite element library [14], which offers efficient 

handling of variational problems in 3D domains. The 

workflow includes the following key elements: 

- Mesh and Geometry: Domains are discretized using 

linear hexahedral elements (BoxMesh). For 

instance, the slab problem uses a grid of 255792 

elements with a 0.04 m resolution in each direction. 

- Function Spaces: 

- Displacement field: Continuous Lagrange P1 

- Density and energy fields: Discontinuous Galerkin 

DG0 

- Boundary Conditions: 

- Fixed support at bottom edges (100 mm wide band) 

- Uniform vertical pressure load on top surface 

Material Parameters: 

- Young’s modulus 𝐸 = 30GPa 

- Poisson’s ratio 𝜈 = 0.2 

- Tensile strength 𝑅𝑏𝑡 = 3MPa 

- Compressive strength 𝑅𝑏 = 30MPa 

The solver employs the CG iterative method with 

AMG preconditioning, and each iteration includes full 

projection of energy fields and filtering. 

SIMP Update Rule and Memory Locking. The 

density update follows the classical SIMP rule: 

 ( ) 0 ,pE E =   (6) 

with penalization factor 𝑝 = 3 and minimum density 

𝜌min = 0.001. To avoid oscillatory behavior and to 

control convergence, we use a damped multiplicative 

update: 
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where 𝑤̃is a neighbor-averaged filtered strain energy 

and 𝜂 = 0.5is the damping exponent. 

To model irreversible failure, we introduce a 

damage memory mechanism: once an element exceeds 

its local threshold, it is locked at full density 𝜌 = 1for 

all future iterations. This constraint stabilizes material 

redistribution and prevents premature deletion of 

structurally vital cells [17]. Figure 1 shows the full 

algorithm block-scheme. 

 
Figure 1 – Algorithm block-scheme 

 

Simulation Results 

Slab Under Uniform Load. A concrete slab of  

2.2 m x 2.2 m plan dimensions and 0.24 m thickness 

was optimized under a uniformly distributed vertical 

pressure of 100 kPa acting on the entire top surface. The 

boundary conditions constrained a 100-mm band along 

the perimeter of the bottom surface, representing a 

stiffened support region that prevented displacement in 

all directions. All vertical and horizontal reactions were 

transferred through this preserved lower band, while 

the remaining internal volume of the slab was free to 

undergo topology optimization. 

Under this loading–support configuration, the 

algorithm retained material in regions corresponding to 

dominant bending load paths. The most prominent 

retained feature is a continuous, fully preserved 

perimeter beam created by the enforced 100-mm outer 

band. This frame acts as the primary load-carrying 
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boundary and serves as the anchoring ring for internal 

stress redistribution. 

Inside this perimeter, the optimization produced 

four distinct radial high-density zones located at the 

mid-span of each edge. These zones appear as denser, 

strip-like regions oriented approximately orthogonally 

to each side and directed toward the slab’s centre. Their 

formation reflects the lines of principal bending and 

shear flow: under a uniform load with edge 

confinement, the mid-side regions carry significantly 

higher bending stresses than the corners. As a result, 

material accumulates along these mid-side stress 

trajectories, producing the characteristic “radial” ribs 

clearly visible in both top and bottom views. 

In contrast, the corner regions exhibit noticeably 

lower density, indicating that they remain lightly 

stressed throughout loading. Optimization consistently 

clears material from these zones due to their reduced 

contribution to global stiffness. This creates a natural 

gradient from the preserved perimeter frame into 

sparsely populated corner volumes. 

At the centre of the slab, the algorithm forms a 

compact rounded high-density core, which corresponds 

to the location of maximum bending moments under 

uniform surface pressure. Around this central region, 

the density gradually decreases, forming smooth 

transitions that resemble softly defined internal rings. 

These transitions highlight a typical bending-

dominated response: high compressive and tensile 

strains concentrated near the slab’s centre, with stresses 

diffusing outward toward the supporting boundaries. 

The resulting topology therefore comprises: 

- a fully preserved outer perimeter beam, 

- four radial densification bands extending inward 

from each mid-side, 

- low-density corner zones reflecting minimal strain 

demand, and 

- a compact central dense area where bending stresses 

are greatest. 

Overall, the optimized structure features realistic 

and manufacturable density gradients aligned directly 

with the mechanical behaviour of the slab under 

uniform loading and supported-edge boundary 

conditions. The final configuration efficiently 

concentrates material only where structurally required 

(see Figure 2). 

The progression of material distribution and 

structural response over the 10 iterations is summarized 

in Table 1. As the optimization proceeded, the retained 

volume gradually decreased from 98.97% in the first 

iteration to 85.38% in the final iteration. This steady 

reduction reflects the removal of inefficient, lightly 

stressed material while maintaining stiffness-critical 

regions. 

 
a) 

 
b) 

 
c) 

Figure 2 – Topology of the bottom of the optimized slab: 

a) – 3D view of the bottom of the slab; b) – side view;  

c) - bottom view 

 

Table 1 – Iteration-wise Optimization Metrics for the 

concrete slab 

Itera

tion 

Volu

me 

(%) 

Avg SED 

(J/m³) 

Max 

Principal 

Stress 

(MPa) 

Max 

Principal 

Strain 

0 98.97 7.645×10⁰ 1.207 3.678×10⁻⁵ 

1 97.19 7.769×10⁰ 1.485 4.320×10⁻⁵ 

2 95.72 7.856×10⁰ 1.417 4.101×10⁻⁵ 

3 94.15 7.959×10⁰ 1.366 5.321×10⁻⁵ 

4 92.61 8.058×10⁰ 1.301 4.455×10⁻⁵ 

5 91.10 8.162×10⁰ 1.209 4.791×10⁻⁵ 

6 89.64 8.263×10⁰ 1.199 5.736×10⁻⁵ 

7 88.17 8.374×10⁰ 1.480 6.404×10⁻⁵ 

8 86.74 8.479×10⁰ 1.318 7.858×10⁻⁵ 

9 85.38 8.580×10⁰ 1.234 1.196×10⁻⁴ 

 

Cantilever Beam. The 3.0 m cantilever beam, fixed 

at the left face and loaded on a small patch near the free 

end, developed a clear load-path-oriented internal 

structure after optimization. The clamped support 

region remained fully preserved, forming a stiff block 

that transfers all reactions into the boundary. From this 

support, the algorithm created a distinctive curved 

compression arch extending toward the loaded upper-
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right zone, representing the principal compressive path 

under bending (Figure 3). 

Below the compression arch, a large, elongated void 

emerged as low-strain-energy material was removed. 

The remaining shell-like rib structure follows the 

neutral axis and maintains global stiffness while 

significantly reducing volume. Along the tension side - 

primarily the lower surface - the optimization preserved 

slender diagonal ribs aligned with the principal tensile 

strain directions, forming an organic truss-like network 

characteristic of bending-dominated members. 

Near the load application region, material condensed 

into a local node that distributes the applied pressure 

into the surrounding arch and tension ribs. The 

preservation of this zone ensures realistic load transfer 

and avoids localized overstress. 

Overall, the final topology consists of a stiff support 

block, a dominant compression arch, a tension rib 

network, and a central void created by material 

removal. This configuration captures the classic 

structural behavior of a cantilever under tip loading, 

with material placed efficiently along principal stress 

trajectories (see Figure 3). 

The evolution of material distribution and mechanical 

response over the iterations is summarized in Table X. 

As the optimization progressed, the retained volume 

decreased from 66.87% in the first iteration to 48.60% 

in the final iteration, while the average strain energy 

stabilized around 5×10³ J/m³. Maximum principal 

stresses ranged between 49–135 MPa, reflecting shifts 

in load paths as nonessential material was removed. 

Despite the significant mass reduction, the topology 

preserved global stiffness by concentrating material 

precisely along the principal compression and tension 

trajectories. 

 
a) 

 
b) 

 
c) 

Figure 3 – Topology of the optimized cantilever beam: 

a) – 3D view; b) – side view; c) – top view 

 

Table 2 – Iteration-wise Optimization Metrics for the 

concrete slab 

Itera

tion 

Volu

me 

(%) 

Avg SED 

(J/m³) 

Max 

Principal 

Stress 

(MPa) 

Max 

Principal 

Strain (–) 

0 66.87 1.826×10³ 49.28 1.558×10⁻³ 

1 56.34 6.278×10³ 81.02 8.153×10⁻³ 

2 57.69 7.862×10³ 102.3 6.298×10⁻² 

3 55.45 6.408×10³ 114.3 6.203×10⁻² 

4 53.50 5.414×10³ 118.7 5.511×10⁻² 

5 51.56 5.135×10³ 120.6 5.164×10⁻² 

6 50.20 5.049×10³ 120.5 3.627×10⁻² 

7 49.35 5.025×10³ 120.3 6.618×10⁻² 

8 48.89 5.028×10³ 122.0 5.651×10⁻² 

9 48.60 5.037×10³ 134.7 3.283×10⁻² 

 

Foundation Block. The 1.18 m × 0.60 m × 0.58 m 

foundation block was optimized under a vertical 

uniformly distributed load applied over the entire top 

surface, while the bottom boundary was fully 

constrained to mimic ground contact. A 100 mm thick 

exterior shell was preserved along all faces, leaving 

only the interior core free for material removal. This 

setup reproduces a realistic foundation condition in 

which the outer concrete envelope must remain solid 

for constructability, durability, and anchorage, while 

the inner volume is optimized for structural efficiency 

(Figure 4). 

Under these boundary conditions, the optimization 

produced a compact internal load-bearing structure 

aligned with the primary vertical compression flow. 

Instead of forming a single large void, the interior 

developed two dominant vertical compression 

columns, located near the left and right thirds of the 

block (Figure 4). These zones correspond to regions 

where strain energy remained highest during the 

iteration. Between these columns, the optimizer 

removed material extensively, creating a central 

horizontal cavity where strain energy levels were 

consistently low. This cavity formed without 

compromising global stiffness because the preserved 

outer shell and vertical internal ribs-maintained 

continuity of load transfer. 

The resulting topology resembles a dual-column strut 

system embedded inside the shell, with the preserved 

exterior surfaces acting as a stiff frame surrounding a 

lighter internal structure (Figures 4). The inner ribs and 

columns are oriented in the direction of principal 

compressive stresses, forming organic, branching load 

paths rather than orthogonal grid patterns. This 

behavior is characteristic of strain-energy-based 

optimization methods, which tend to form compression 

trees rather than predefined truss geometries. 

Near the top surface, material was retained over a 

broad area to distribute the applied pressure into the 

internal columns, avoiding localized overstress. At the 

bottom, the preserved shell concentrated stiffness along 

the support plane, ensuring uniform transfer of reaction 

forces into the ground. As iterations progressed, the 

optimizer reduced the density of peripheral interior 

regions, producing a smooth transition from dense 

vertical struts to the central cavity. 
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Overall, the optimized foundation block demonstrates 

a structurally efficient internal load-bearing topology: a 

preserved stiff outer shell enclosing two major 

compression struts and several secondary ribs, all 

aligned with principal compressive stress trajectories. 

This configuration provides a significant mass 

reduction in the core while maintaining the load-

carrying capacity required under uniform vertical 

compression (Figures 4). 

As the optimization progressed, the interior volume 

fraction decreased steadily - from 97.90% in the initial 

iteration to 88.69% by iteration 9 - indicating gradual 

removal of low-contributing material while 

maintaining the global load-bearing framework. 

Meanwhile, the average strain energy density increased 

slightly, stabilizing around 1.23×10¹ J/m³, reflecting a 

more efficient internal stress distribution. Maximum 

principal stresses increased from 0.026 MPa to 0.478 

MPa as material concentrated along narrower load 

paths, consistent with strut formation. These trends are 

summarized in Table X. 

 

 
a) 

 
b) 

 
c) 

Figure 4 – Topology of the optimized foundation block: 

a) – 3D view; b) – side view; c) – top view

Table 2 – Iteration-wise Optimization Metrics for the 

concrete block 

Itera

tion 

Volu

me 

(%) 

Avg SED 

(J/m³) 

Max 

principal 

stress 

(MPa) 

Max 

principal 

strain (–) 

0 97.90 1.046×10¹ 0.026 8.490×10⁻⁶ 

1 96.97 1.151×10¹ 0.392 2.082×10⁻⁵ 

2 96.50 1.156×10¹ 0.407 3.101×10⁻⁵ 

3 95.84 1.165×10¹ 0.435 3.376×10⁻⁵ 

4 94.05 1.177×10¹ 0.463 4.107×10⁻⁵ 

5 91.92 1.191×10¹ 0.460 6.222×10⁻⁵ 

6 90.67 1.206×10¹ 0.446 7.625×10⁻⁵ 

7 89.66 1.218×10¹ 0.449 5.373×10⁻⁵ 

8 89.07 1.227×10¹ 0.451 6.290×10⁻⁵ 

9 88.69 1.235×10¹ 0.478 7.823×10⁻⁵ 

Each test case converged within 10 iterations. No 

checkerboarding or disconnected regions were 

observed, confirming the method's robustness for 

practical structural configurations. 

 

Conclusions.  

 This work introduced a strain energy density-based 

topology optimization framework that combines SIMP 

penalization with a Lode-Nadai-derived multiaxial 

energy limit. The method incorporates a stability-

oriented memory mechanism and preserves 

manufacturable outer boundaries, making it suitable for 

brittle and additively manufactured concrete structures. 

Across all numerical examples, the approach 

produced stable, continuous, and mechanically 

meaningful topologies. The optimized structures 

demonstrated material reduction between 

approximately 10–50%, depending on boundary 

conditions, while maintaining coherent load paths 

across 10 sample iterations. The strain-energy 

redistribution observed during iteration showed 

consistent trends: average SED increased modestly, 

while maximum stress values rose as material 

concentrated along principal trajectories, reflecting 

improved structural efficiency rather than numerical 

instability. These behaviors were consistent across 

bending, compression, and combined-stress 

configurations. 

Importantly, the method avoided checkerboarding 

and maintained connectivity without artificial filters. 

The internal topologies - central cavities, strut-like 

compression ribs, and stress-aligned bending members 

emerged naturally from the energy criterion, 

confirming that the formulation captures true 

mechanical behavior rather than numerical artifacts. 

Overall, the results demonstrate that incorporating 

multiaxial strain-energy limits into SIMP leads to 

topologies that are efficient, realistic, and suitable for 

3D-printed concrete applications. The framework 

provides a foundation for future developments, 

including nonlinear constitutive modeling, anisotropic 

printing constraints, and integration with AI-assisted 

optimization workflows. 
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Оптимізація топології на основі густини енергії деформації із використанням 
SIMP та локальних критеріїв руйнування для конструкцій із бетону, 

надрукованого методом 3D-друку 
 

Аннотація. У статті запропоновано метод оптимізації топології крихких матеріалів на основі густини енергії 

деформації, з орієнтацією на застосування до бетонних конструкцій, виготовлених методом 3D-друку. На основі 

підходу SIMP (ізотропний твердий матеріал з пеналізацією), метод інтегрує локальний критерій руйнування, 

побудований на моделі граничної енергії деформації типу Лоде–Надаі. Запропонований критерій враховує 

напружений стан через девіаторні інваріанти деформацій, що дозволяє адаптуватися до умов розтягування, стиску чи 

зсуву на рівні окремих елементів сітки. Уведено механізм «блокування пам’яті», який незворотно зберігає ті елементи, 

що перевищили локальний поріг граничної енергії, що забезпечує конструктивну надійність і запобігає нестабільному 

видаленню матеріалу. Чисельна реалізація виконана у середовищі скінченних елементів FEniCS, що забезпечує повну 

гнучкість у визначенні матеріальних моделей та алгоритмів розв’язання. Продемонстровано ефективність методу на 

прикладі плити, консольної балки та фундаментного блоку — оптимізовані конфігурації забезпечують реалізовані 

конструкції зі зменшеним об'ємом матеріалу і підвищеною стійкістю до руйнування. Результати свідчать про те, що 

енергетичний підхід дозволяє отримувати більш фізично обґрунтовані рішення порівняно з традиційною оптимізацією 

за критерієм комплаєнсу, особливо для матеріалів із низькою міцністю на розтяг. 

 
Ключові слова: топологічна оптимізація, SIMP, 3D-друк з бетону, щільність енергії деформації, бетон. 
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