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Strain Energy Density-Based Topology Optimization Using SIMP and
Local Failure Criteria for 3D-Printed Concrete Structures

Abstract. This paper presents a strain energy density—based topology optimization method tailored for brittle materials such as
3D-printed concrete. Extending the SIMP framework, the approach incorporates a local failure criterion derived from a Lode—
Nadai ultimate strain energy model, allowing each element to adapt to tension-, compression-, or shear-dominated stress states.
A memory-locking mechanism preserves elements that exceed their local energy limits, preventing unstable material removal
and improving structural robustness. The method is implemented in the FEniCS finite element environment, enabling full
customization of material behavior and numerical routines. Benchmark simulations of a slab, cantilever beam, and foundation
block demonstrate that the proposed strategy generates manufacturable, failure-resistant layouts and produces more physically

consistent topologies than traditional compliance-based designs, particularly for materials with limited tensile capacity.
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Introduction.

Topology optimization has emerged as a powerful
tool for designing high-performance structures by
distributing material within a prescribed domain to
achieve optimal mechanical behavior under given
constraints. Among the various approaches, the Solid
Isotropic Material with Penalization (SIMP) method is
widely used due to its simplicity and ability to produce
nearly discrete designs using continuous design
variables [1,2]. However, conventional SIMP
formulations  primarily focus on compliance
minimization, often neglecting the material's physical
failure limits.

This limitation becomes critical in applications
involving brittle or quasi-brittle materials - such as
concreteespecially when used in  additive
manufacturing processes. In such contexts, mechanical
failure is governed not only by stress magnitudes but

also by the distribution and concentration of energy
within the structure. Incorporating local failure criteria
based on strain energy density offers a more physically
meaningful way to guide material redistribution [3-5].
Strain energy density (SED) represents the internal
elastic energy stored per unit volume and can serve as
a valuable indicator for material failure, particularly
when contrasted with the material's ultimate energy
absorption capacity. By formulating the optimization
process around an energy-based failure criterion, it
becomes possible to ensure that all material in the
structure remains within safe operating limits,
enhancing structural robustness and reliability [6,7].
Recent advances in numerical extremum-search
algorithms also emphasize the importance of energy-
driven optimization principles. In particular, the
improved Method of Integral Gradients (MIG) has
demonstrated efficient procedures for locating global
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extrema of multivariable functions [20,21], offering
complementary perspectives that conceptually align
with the strain-energy motivation adopted in this work.

Other studies have shown the effectiveness of
iterative approaches for optimizing reinforced concrete
floor systems, including early work on slab topology
rationalization presented in [19].

This paper proposes an energy-constrained SIMP
topology  optimization framework where the
optimization is driven by the ratio between the actual
strain energy density and a local ultimate energy
threshold. The threshold is computed using a Lode—
Nadai-based formulation, where the ultimate energy is
a function of the local deviatoric strain state. By using
second-order polynomial interpolation of failure
energies under uniaxial tension, compression, and pure
shear, the model defines a continuous ultimate energy
field that respects the material’s multiaxial failure
behavior [8,9].

An important aspect of the proposed framework is
the spatially varying nature of the failure criterion,
which reflects the multiaxial stress state of the
structure. Moreover, a filtering strategy and preserved
region constraints are introduced to prevent the
formation of disconnected voids, promoting
manufacturable and physically realistic structures. The
method is particularly suitable for emerging materials
and fabrication processes, such as 3D-printed concrete,
where stress redistribution and material efficiency are
paramount [10-12].

To demonstrate the effectiveness of the method, we
apply it to three structural case studies: a cantilever
beam, a foundation block with constrained supports,
and a simply supported slab subjected to surface loads.
Each example highlights the influence of the energy-
based failure constraint on the topology evolution and
final material layout.

The remainder of this paper introduces the
theoretical basis of the strain-energy-driven failure
criterion together with the Lode—Nadai interpolation,
followed by a description of the proposed SIMP-based
optimization  framework and its  numerical
implementation. The subsequent sections present the
topology optimization results for the selected case
studies and conclude with key findings and prospects
for future research.

Problem statement.

This study addresses the limitations of conventional
SIMP-based topology optimization by integrating
strain energy density constraints derived from Lode-
Nadai strength theory. The goal is to ensure that each
element remains within its mode-specific energy
capacity while promoting structurally coherent and
manufacturable designs.

Main material and results.

Overview and Physical Motivation. Topology
optimization has become a fundamental tool in
structural design, enabling the efficient distribution of
material within a domain to maximize performance
under constraints such as stiffness, mass, or

manufacturing limits. While compliance minimization
remains the prevailing objective in classical topology
optimization [1], it often neglects local material failure
risks. This is especially critical for brittle materials like
3D-printed concrete, where strain localization and
cracking may occur well before global failure.

To address this, we propose a novel formulation of
topology optimization that leverages local strain energy
density as a governing criterion for material
distribution. The method ensures that, throughout the
optimization process, no element exceeds its allowable
energy threshold derived from physically meaningful
limits based on the Lode-Nadai failure model. This
approach improves structural integrity by preventing
weak internal zones and promoting manufacturable
designs with well-defined stress trajectories [3,13].

The methodology is implemented using the SIMP
(Solid  Isotropic  Material with  Penalization)
framework, enhanced with energy-based filtering and a
memory mechanism to prevent reactivation of
overloaded zones. The simulations are carried out using
the open-source FEniCS computing platform [14],
providing flexibility for integrating custom material
models, solvers, and geometric definitions.

Strain Energy Density as a Failure Measure.
Strain energy density w is an energy-based scalar field
derived from the stress and strain tensors in the context
of linear elasticity:

w==0:¢, 1
5 ©)

where ais the stress tensor and &the strain tensor. In
topology optimization, the energy density provides a
measure of local deformation and stress, making it a
suitable candidate for evaluating the proximity to
failure [15, 18].

To introduce failure sensitivity, we define a cell-
wise ultimate strain energy threshold e, (x),
determined as a function of the Lode-Nadai parameter
X € [—1,1]. This parameter captures the nature of the
stress state - whether it is closer to uniaxial tension,
compression, or shear — via the deviatoric strain
invariants:

J, = %dev(s) tdev(e),J, = det(deV(g));

_7,0’ h 39)="Y=. 73
4 where sm( ) sz

@)

We then define the energy threshold as a second-
order polynomial in y:

ell(;()zal+a2;(+a3;(2. 3)

The coefficients a;are computed from ultimate
strain energies in three canonical stress states — uniaxial
tension, uniaxial compression, and pure shear — using
characteristic strengths of the 3D-printed concrete:
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This framework creates a spatially adaptive failure
criterion, ensuring elements are not removed if they
carry critical structural loads, even under varying local
stress modes [16].

Numerical Implementation in FEniCS. The
proposed method is implemented using the FEniCS
finite element library [14], which offers efficient
handling of variational problems in 3D domains. The
workflow includes the following key elements:

- Mesh and Geometry: Domains are discretized using
linear hexahedral elements (BoxMesh). For
instance, the slab problem uses a grid of 255792
elements with a 0.04 m resolution in each direction.

- Function Spaces:

- Displacement field: Continuous Lagrange P1

- Density and energy fields: Discontinuous Galerkin
DGO

- Boundary Conditions:

- Fixed support at bottom edges (100 mm wide band)

- Uniform vertical pressure load on top surface
Material Parameters:

- Young’s modulus E = 30GPa

- Poisson’s ratio v = 0.2

- Tensile strength Rj,; = 3MPa

- Compressive strength R, = 30MPa
The solver employs the CG iterative method with

AMG preconditioning, and each iteration includes full
projection of energy fields and filtering.

SIMP Update Rule and Memory Locking. The
density update follows the classical SIMP rule:

E(p):EO-p”, (6)

with penalization factor p = 3 and minimum density
Pmin = 0.001. To avoid oscillatory behavior and to
control convergence, we use a damped multiplicative
update:

n
"V =clip p("’-(wJ Poin-1.0 [, (D

e.(x)

where Wis a neighbor-averaged filtered strain energy
and n = 0.5is the damping exponent.

To model irreversible failure, we introduce a
damage memory mechanism: once an element exceeds
its local threshold, it is locked at full density p = 1for
all future iterations. This constraint stabilizes material
redistribution and prevents premature deletion of
structurally vital cells [17]. Figure 1 shows the full
algorithm block-scheme.

Start and Input Parameters

L 2

Mesh Generation

L 2

Initial Density Assignment

2

Apply Boundary Conditions

v

Compute Lode-Nadai
Polynomial Coefficients

Solve Elasticity Prablem

7

Compute Strain and Energy
Fields

v

Evaluate Local Ultimate Energy
Density

v

Identify Overloaded Elements

v

Filter Energy Field
{Neighborhood Averaging}

v

Update Material Density

Optimization Loop

<

Apply Hard Constraints

<

Export Iteration Results

¢

Final Structural Analysis

o3

Export Final Geametry

o3

End

Figure 1 — Algorithm block-scheme

Simulation Results

Slab Under Uniform Load. A concrete slab of
2.2 m x 2.2 m plan dimensions and 0.24 m thickness
was optimized under a uniformly distributed vertical
pressure of 100 kPa acting on the entire top surface. The
boundary conditions constrained a 100-mm band along
the perimeter of the bottom surface, representing a
stiffened support region that prevented displacement in
all directions. All vertical and horizontal reactions were
transferred through this preserved lower band, while
the remaining internal volume of the slab was free to
undergo topology optimization.

Under this loading—support configuration, the
algorithm retained material in regions corresponding to
dominant bending load paths. The most prominent
retained feature is a continuous, fully preserved
perimeter beam created by the enforced 100-mm outer
band. This frame acts as the primary load-carrying
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boundary and serves as the anchoring ring for internal
stress redistribution.

Inside this perimeter, the optimization produced
four distinct radial high-density zones located at the
mid-span of each edge. These zones appear as denser,
strip-like regions oriented approximately orthogonally
to each side and directed toward the slab’s centre. Their
formation reflects the lines of principal bending and
shear flow: under a wuniform load with edge
confinement, the mid-side regions carry significantly
higher bending stresses than the corners. As a result,
material accumulates along these mid-side stress
trajectories, producing the characteristic “radial” ribs
clearly visible in both top and bottom views.

In contrast, the corner regions exhibit noticeably
lower density, indicating that they remain lightly
stressed throughout loading. Optimization consistently
clears material from these zones due to their reduced
contribution to global stiffness. This creates a natural
gradient from the preserved perimeter frame into
sparsely populated corner volumes.

At the centre of the slab, the algorithm forms a
compact rounded high-density core, which corresponds
to the location of maximum bending moments under
uniform surface pressure. Around this central region,
the density gradually decreases, forming smooth
transitions that resemble softly defined internal rings.
These transitions highlight a typical bending-
dominated response: high compressive and tensile
strains concentrated near the slab’s centre, with stresses
diffusing outward toward the supporting boundaries.

The resulting topology therefore comprises:

- a fully preserved outer perimeter beam,

- four radial densification bands extending inward
from each mid-side,

- low-density corner zones reflecting minimal strain
demand, and

- a compact central dense area where bending stresses
are greatest.

Overall, the optimized structure features realistic
and manufacturable density gradients aligned directly
with the mechanical behaviour of the slab under

uniform loading and supported-edge boundary
conditions. The final configuration efficiently
concentrates material only where structurally required
(see Figure 2).

The progression of material distribution and
structural response over the 10 iterations is summarized
in Table 1. As the optimization proceeded, the retained
volume gradually decreased from 98.97% in the first
iteration to 85.38% in the final iteration. This steady
reduction reflects the removal of inefficient, lightly
stressed material while maintaining stiffness-critical
regions.

)
Figure 2 — Topology of the bottom of the optimized slab:
a) — 3D view of the bottom of the slab; b) — side view;
¢) - bottom view

Table 1 — Iteration-wise Optimization Metrics for the
concrete slab

Itera | Volu | AvgSED Max Max
tion me (J/m?) Principal Principal
(%) Stress Strain
(MPa)
0 98.97 | 7.645x10° 1.207 3.678x107
1 97.19 | 7.769%10° 1.485 4.320x10°°
2 95.72 | 7.856x10° 1.417 4.101x10°
3 94.15 | 7.959x10° 1.366 5.321x10°
4 92.61 | 8.058x10° 1.301 4.455x10°°
5 91.10 | 8.162x10° 1.209 4.791x10°°
6 89.64 | 8.263x10° 1.199 5.736x107
7 88.17 | 8.374x10° 1.480 6.404x1075
8 86.74 | 8.479x10° 1.318 7.858x107
9 85.38 | 8.580x10° 1.234 1.196x10*

Cantilever Beam. The 3.0 m cantilever beam, fixed
at the left face and loaded on a small patch near the free
end, developed a clear load-path-oriented internal
structure after optimization. The clamped support
region remained fully preserved, forming a stiff block
that transfers all reactions into the boundary. From this
support, the algorithm created a distinctive curved
compression arch extending toward the loaded upper-
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right zone, representing the principal compressive path
under bending (Figure 3).

Below the compression arch, a large, elongated void
emerged as low-strain-energy material was removed.
The remaining shell-like rib structure follows the
neutral axis and maintains global stiffness while
significantly reducing volume. Along the tension side -
primarily the lower surface - the optimization preserved
slender diagonal ribs aligned with the principal tensile
strain directions, forming an organic truss-like network
characteristic of bending-dominated members.

Near the load application region, material condensed
into a local node that distributes the applied pressure
into the surrounding arch and tension ribs. The
preservation of this zone ensures realistic load transfer
and avoids localized overstress.

Overall, the final topology consists of a stiff support
block, a dominant compression arch, a tension rib
network, and a central void created by material
removal. This configuration captures the classic
structural behavior of a cantilever under tip loading,
with material placed efficiently along principal stress
trajectories (see Figure 3).

The evolution of material distribution and mechanical
response over the iterations is summarized in Table X.
As the optimization progressed, the retained volume
decreased from 66.87% in the first iteration to 48.60%
in the final iteration, while the average strain energy
stabilized around 5x%10°* J/m?. Maximum principal
stresses ranged between 49—135 MPa, reflecting shifts
in load paths as nonessential material was removed.
Despite the significant mass reduction, the topology
preserved global stiffness by concentrating material
precisely along the principal compression and tension
trajectories.

¢)
Figure 3 — Topology of the optimized cantilever beam:
a) — 3D view; b) — side view; c) — top view

Table 2 — Iteration-wise Optimization Metrics for the
concrete slab

Itera | Volu | AvgSED Max Max
tion me (J/md) Principal Principal
(%) Stress Strain (-)
(MPa)
0 | 66.87 | 1.826x10° 49.28 1.558x1073
1 56.34 | 6.278x10° 81.02 8.153x107°
2 | 57.69 | 7.862x10? 102.3 6.298x10
3 55.45 | 6.408x10° 1143 6.203x102
4 | 53.50 | 5.414x10° 118.7 5.511x102
5 51.56 | 5.135x10° 120.6 5.164x102
6 | 50.20 | 5.049x10? 120.5 3.627x107
7 | 4935 | 5.025x10? 120.3 6.618x107
8 | 48.89 | 5.028x10° 122.0 5.651x102
9 | 48.60 | 5.037x10° 134.7 3.283x10

Foundation Block. The 1.18 m x 0.60 m x 0.58 m
foundation block was optimized under a vertical
uniformly distributed load applied over the entire top
surface, while the bottom boundary was fully
constrained to mimic ground contact. A 100 mm thick
exterior shell was preserved along all faces, leaving
only the interior core free for material removal. This
setup reproduces a realistic foundation condition in
which the outer concrete envelope must remain solid
for constructability, durability, and anchorage, while
the inner volume is optimized for structural efficiency
(Figure 4).

Under these boundary conditions, the optimization
produced a compact internal load-bearing structure
aligned with the primary vertical compression flow.
Instead of forming a single large void, the interior
developed two dominant vertical compression
columns, located near the left and right thirds of the
block (Figure 4). These zones correspond to regions
where strain energy remained highest during the
iteration. Between these columns, the optimizer
removed material extensively, creating a central
horizontal cavity where strain energy levels were
consistently low. This cavity formed without
compromising global stiffness because the preserved
outer shell and wvertical internal ribs-maintained
continuity of load transfer.

The resulting topology resembles a dual-column strut
system embedded inside the shell, with the preserved
exterior surfaces acting as a stiff frame surrounding a
lighter internal structure (Figures 4). The inner ribs and
columns are oriented in the direction of principal
compressive stresses, forming organic, branching load
paths rather than orthogonal grid patterns. This
behavior is characteristic of strain-energy-based
optimization methods, which tend to form compression
trees rather than predefined truss geometries.

Near the top surface, material was retained over a
broad area to distribute the applied pressure into the
internal columns, avoiding localized overstress. At the
bottom, the preserved shell concentrated stiffness along
the support plane, ensuring uniform transfer of reaction
forces into the ground. As iterations progressed, the
optimizer reduced the density of peripheral interior
regions, producing a smooth transition from dense
vertical struts to the central cavity.
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Overall, the optimized foundation block demonstrates
a structurally efficient internal load-bearing topology: a
preserved stiff outer shell enclosing two major
compression struts and several secondary ribs, all
aligned with principal compressive stress trajectories.
This configuration provides a significant mass
reduction in the core while maintaining the load-
carrying capacity required under uniform vertical
compression (Figures 4).

As the optimization progressed, the interior volume
fraction decreased steadily - from 97.90% in the initial
iteration to 88.69% by iteration 9 - indicating gradual
removal of low-contributing material while
maintaining the global load-bearing framework.
Meanwhile, the average strain energy density increased
slightly, stabilizing around 1.23x10" J/m?, reflecting a
more efficient internal stress distribution. Maximum
principal stresses increased from 0.026 MPa to 0.478
MPa as material concentrated along narrower load
paths, consistent with strut formation. These trends are
summarized in Table X.

)
Figure 4 — Topology of the optimized foundation block:
a) — 3D view; b) — side view; c) — top view

Table 2 — Iteration-wise Optimization Metrics for the
concrete block

Itera | Volu Avg SED Max Max
tion me (J/md) principal principal
(%) stress strain (—)
(MPa)
0 97.90 | 1.046x10! 0.026 8.490x10°¢
1 96.97 | 1.151x10! 0.392 2.082x10
2 96.50 | 1.156x10! 0.407 3.101x10
3 95.84 | 1.165x10! 0.435 3.376x10°
4 94.05 | 1.177x10! 0.463 4.107x10°
5 91.92 | 1.191x10! 0.460 6.222x10°
6 90.67 | 1.206x10! 0.446 7.625x107
7 89.66 | 1.218x10! 0.449 5.373x10°°
8 89.07 | 1.227x10! 0.451 6.290x10°
9 88.69 | 1.235x10! 0.478 7.823x10°

Each test case converged within 10 iterations. No
checkerboarding or disconnected regions were
observed, confirming the method's robustness for
practical structural configurations.

Conclusions.

This work introduced a strain energy density-based
topology optimization framework that combines SIMP
penalization with a Lode-Nadai-derived multiaxial
energy limit. The method incorporates a stability-
oriented memory mechanism and preserves
manufacturable outer boundaries, making it suitable for
brittle and additively manufactured concrete structures.

Across all numerical examples, the approach
produced stable, continuous, and mechanically
meaningful topologies. The optimized structures
demonstrated material reduction between
approximately 10-50%, depending on boundary
conditions, while maintaining coherent load paths
across 10 sample iterations. The strain-energy
redistribution observed during iteration showed
consistent trends: average SED increased modestly,
while maximum stress values rose as material
concentrated along principal trajectories, reflecting
improved structural efficiency rather than numerical
instability. These behaviors were consistent across
bending,  compression, and  combined-stress
configurations.

Importantly, the method avoided checkerboarding
and maintained connectivity without artificial filters.
The internal topologies - central cavities, strut-like
compression ribs, and stress-aligned bending members
emerged naturally from the energy criterion,
confirming that the formulation captures true
mechanical behavior rather than numerical artifacts.

Overall, the results demonstrate that incorporating
multiaxial strain-energy limits into SIMP leads to
topologies that are efficient, realistic, and suitable for
3D-printed concrete applications. The framework
provides a foundation for future developments,
including nonlinear constitutive modeling, anisotropic
printing constraints, and integration with Al-assisted
optimization workflows.
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OnTuMizaLiist Torosoril HA OCHOBI NYCTUHU eHepril gedopMaLjl i3 BUKOPUCTAHHAM
SIMP Ta nokanbHUX KpUTEpIiB pyMHYBaHHS /19 KOHCTPYKLH i3 6eTOHYy,
HappyKkoBaHoro MetofoM 3D-apyky

AHHOTaUif. Y cTaTTi 3ampOMOHOBAHO METOJ ONTHMI3alii TOMONOTII KPUXKHX MarepiaiiB Ha OCHOBI TYCTHHH €Hepril
nedopmariii, 3 Opi€HTaIi€l0 Ha 3aCTOCYBaHHS 0 OETOHHHX KOHCTPYKIIH, BHTOTOBIEHHX MeTonoM 3D-mpyky. Ha ocHoBi
migxony SIMP (i3oTpomHmii TBepamii MaTepial 3 TEHaJi3ali€l0), METOJ] IHTErpye JOKAIBHUK KpUTEpid pyHHYBaHHS,
noOyZIoBaHUK Ha Mojeni TpaHu4HOi eHeprii aedopmanii Tumy Jlome—Hamai. 3ampomoHoBaHMiT KpUTEpii BpaxoBye
HaIpy>KeHUH CTaH uepe3 JeBiaTOpHi iHBapiaHTH HedopMaliii, 1o JO3BOJISIE AANTYBATUCS 10 YMOB PO3TATYBAHHS, CTUCKY UM
3CYBY Ha PiBHI OKPEMUX EJIEMCHTIB CITKH. Y BEICHO MEXaHi3M «OJIOKYBaHHS MaM’sTi», IKU HE3BOPOTHO 30epirae Ti EIIEMEHTH,
1110 TIEPEBUILIMIIN JOKaJbHHUU OPIT IPaHUYHOI eHeprii, 1110 3a0e3neuye KOHCTPYKTUBHY HaIiHHICTb 1 3amobirae HecTablIbHOMY
BUJIAJICHHIO MaTepiaiy. UucenbHa pealtizanis BUKOHaHA y cepenoBuili ckinueHHHuX eneMenTiB FEniCS, mo 3abe3nedye mosHy
THYYKICTh Yy BU3HAYEHHI MaTepiajJbHUX MOJENIeH Ta alNropuTMiB po3B’si3aHHs. [IpogeMoHCTpoBaHO e(heKTHBHICTh METOY Ha
MPUKIaZl TUIATH, KOHCOJIBHOI 0alKy Ta (GYyHAaMEHTHOTO OJIOKY — ONTHMIi30BaHI KOH(Irypaii 3a0e3nedyoTh peanizoBaHi
KOHCTPYKIII 31 3MEHIIIEHUM 00'eMOM MaTepiaiy 1 MiJBHIICHOIO CTIHKICTIO O pyHHYBaHHA. Pe3ynpraTu cBigyath mpo Te, mio
SHEPTeTHYHMH MiIX111 JO3BOJISIE OTPUMYBATH OB (Hi3UIHO OOTPYHTOBAHI PILICHHS MOPIBHSHO 3 TPAJULIHOIO ONITUMI3aLli€I0
3a KPUTEPiEM KOMILIA€HCY, OCOOIMBO ISl MaTepialliB 13 HU3HKOIO MII[HICTIO Ha PO3TAT.

Kntoyosi cnoBa: Tomosnoriyna ontumizanisi, SIMP, 3D-npyk 3 GeToHy, MminbHICTh eHeprii aedopmarii, 6eToH.

*Anpeca i muctyBanHs E-mail: oleg.kalmikov(@kname.edu.ua

MpwitHsTo oo
29.04.2025 opyky nicnsa 03.06.2025
peLeHsyBaHHsL

Ony6nikoBaHoO
(onpuniopHeHo):

HapjcnaHo mo

26.06.2025
penaKuii:

88 ISSN: 2518-1106(online) Academic journal. Industrial Machine Building, Civil Engineering. -1 (64)' 2025


https://orcid.org/0009-0005-2845-4930
https://orcid.org/0000-0003-1570-8469
mailto:oleg.kalmikov@kname.edu.ua

