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semi-probabilistic. Meanwhile, in parallel with this dual method, for many years, fully probabilistic (statistical) approaches to
the calculations have been developed. The aim of the article is to consistently review the approaches developed over the course
of ninety years to the implementation of general probabilistic methods for calculating building structures, starting from the
1930s to the present. It is emphasized that domestic specialists are actively developing probabilistic methods, the results of
which are implemented in regulatory documents. The prospects of the results of this scientific direction in creating a new
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Introduction

The current method of -calculating building
structures by limit states (previously by allowable
stresses) is essentially semi-probabilistic. The main
parameters of the method — load values, strength
characteristics of materials, dimensions of elements,
etc. — are of a variable statistical nature. They are
studied and described by probabilistic methods, on the
basis of which deterministic values of design
parameters are justified. Meanwhile, in parallel with
this dual method, for many years, fully probabilistic
(statistical) approaches to the calculations of building
structures have been developed. It so happened that for
a long time they could not be implemented into the
methodology of building design, despite the promising
results of this scientific direction.

Review of research sources and publications

The beginning of the development of probabilistic
(statistical) calculation of building structures can be
considered the end of the 1930s, when a real scientific
offensive on the safety factor, the basis of the method
of allowable stresses, was carried out by domestic and
foreign researchers [1-3]. The probabilistic nature of
the safety factor, presented in the canonical form of the
product of factors, was revealed, and numerical values
of the guarantee of the non-destructibility of the
structure were obtained [4,5]. The 1950s-1960s were
marked by unsuccessful attempts by supporters of
probabilistic methods to introduce the concept of
strength reserve and safety characteristics into design

practice [6,7]. Since the 70s of the last century,
domestic specialists have been actively developing
probabilistic methods [8-11], their results have been
partially implemented in regulatory documents of
Ukraine [12]. In recent years, publications have
appeared with proposals for further implementation of
probabilistic approaches in the calculations of building
structures [13,14].

Definition of unsolved aspects of the problem

It should be emphasized that due to the fact that the
current building design standards use fixed parameters,
the selection of which is based on a probabilistic basis,
over the many years of operation of the allowable stress
method, and later the limit state method, the main
attention of the developers of the standards was paid to
the accumulation and statistical processing of data on
individual components of the calculation methodology.
As a result, the achievements of the developers of
general probabilistic variants of the calculation
methodology for building structures, which contain
valuable scientific results that are still relevant today,
were ignored.

Problem statement

The goal and objectives of the study are a consistent
review of approaches developed over the past ninety
years to the implementation of general probabilistic
methods for calculating building structures.
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Basic material and results

It is known that the basic principle of engineering
calculation is the condition of non-destructiveness,
according to which the greatest force acting on the
structure during its service life S,r, must be less than
or, at the very least, equal to the smallest possible
ultimate resistance of the structure material R, during
this time. The condition of non-destructiveness can be
written in expanded form in conjunction with the
method of allowable stresses:

max S,, =nS<cR=minR,, (D)

where 7 is the safety factor relative to the calculated
forces (stresses); c is the transition factor from the
actual material stress to the standard one.

If we transfer the factor n to the right side of the
equation, we obtain the following expression:

S<(c/n)R=kR )

W here k is the calculated safety factor for the standard
resistance of the material.

In his small but extremely meaningful work
“Fundamentals of Statistical Consideration of the
Safety Factor of Structures”, the main content of
which is given in the monograph [5], the classic of
metal structures N.S. Strilecki noted that the
fulfilment of inequality (1) can be predicted only with
a certain probability. The conclusion was
substantiated that by following a statistical path,
studying and comparing the facts of the operation of a
homogeneous group of structures and materials in
structures, it is possible to establish the law of the
appearance of these factors and extrapolate this law
into the future, if there are sufficient grounds for this.

For the first time, the structure of the safety factor
(2) was presented in the form of a product of factors,
which was called the canonical structure of the safety
factor. An essential feature of these factors is that they
can be considered independent of each other. Each of
the coefficients that characterizes any feature of the
structure's operation depends on a large number of
reasons and circumstances that may occur during the
service of the structure, and therefore it can best be
described using a statistical method.

N.S. Strilecki rightly showed that the condition
of non-destructibility (1) requires the combination
of the extreme values of the distribution curves nS
and cR. However, since these curves are asymptotic,
the exact fulfilment of the specified condition is
impossible, because the extreme values of the
curves are unknown. Thus, the fulfilment of the
condition of non-destructibility is possible only with
a certain accuracy. For this purpose, it is necessary
to conditionally cut off the specified curves at a
certain point and connect the cut-off curves. The
measure of the accuracy of such a connection is,
obviously, the rejected areas of the curves at the
actual point of intersection or the product of these
areas. By rejecting them, we can take them for
practical zero and by connecting the curves, we can
state that the condition of non-destructibility is

fulfilled and our structures are practically non-
destructible. Thus, the product of the rejected areas
w, -, can be considered as a measure of the

inaccuracy of the statement that the structure is non-
destructible, and the value /" can be considered as a
measure of the accuracy of the statement that the
structure is indestructible.

I'=l-o -, (3)

Therefore, this value I (3) was called by
N.S. Strilecki the value of the guarantee of the
indestructibility of the structure. He emphasized
that the wvalue of the guarantee of the
indestructibility is a completely conditional value
associated with the fulfillment of requirement (1).
An estimate of the approximation of this approach
is given in the publication [4].

Back in 1938, N.S. Strilecki first determined the
numerical values of the guarantee of the
indestructibility, that is, he obtained the first results
of the implementation of the statistical method of
calculating structures. Steel trusses under a cold
reinforced concrete roof were considered, statistical
data on snow and wind loads for 35 years
(1885...1930) were taken into account. An analysis
of trusses made of St3 steel with allowable stress [0']
= 1400 kgf/cm? and statistical characteristics of the
yield strength was carried out: mathematical
expectation & = 2700 kgf/cm? and standard & =
148 kgf/cm?. The areas of the tail parts of the curves
were @ =2,5-10_4; , =3~1O_4, which gave the
value of the guarantee of indestructibility /=1 —
8.5-10%. Therefore, steel trusses calculated
according to the 1934 design codes had very high
values of the guarantee of non-destructiveness.
Hence, if we consider the initial data to be correct,
we could conclude that there are objective
prerequisites for increasing the allowable stresses
for metal structures compared to the 1934 design
codes.

At the height of World War II in 1942, these
considerations were substantiated by N.S. Strilecky
and taken into account in the “Instructions for the
Design and Application of Steel Structures in
Wartime Conditions (U-28-42)”. In them, the
allowable stresses of steel structures were increased
by 200 kgf/cm? and were taken for structures made
of St3 steel to be 1600 kgf/ecm? (12.5% more) while
maintaining the mechanical characteristics of steels
without changing them (the standardized lowest
yield strength for St3 steel was 2200 kgf/cm?). This
was a real triumph of scientific and technical
thought when “at the tip of a pen” such a significant
increase in the design strength of steel was achieved,
especially necessary during the war. These changes
reduced the safety factor from 1.58 to 1.36 (under
the action of the main loads). Despite the rather
small value of the safety factor, which was a record,
such an increase in stresses turned out to be
possible, as the corresponding analysis and
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subsequent accident-free operation showed. The
value of the guarantee of indestructibility at a safety
factor of 1.36 was, according to various estimates,
I=1-6-107; 1-3-10°% 1-5-10°. Thus, all values of I"
remained quite close to unity, they turned out to be
only millionths less than unity for light-type metal
structures. After the end of the war, the increased
allowable stress was left unchanged.

In the 1940s, proposals for the introduction of fully
statistical design methods appeared. The apologist for
this approach was A.R. Rzhanitsyn, who had been
campaigning for the statistical method since 1947 [6].
He recalled that the inaccuracy of the normative
calculation for allowable stresses is associated with the
following factors:

+ the spread of values of the characteristics of
building materials, due to the existing technology of
their manufacture;

* deviations from the calculated values of the acting
loads, determined by natural influences that do not
depend on human will (for example, wind load);

* inaccuracies in the geometric dimensions of
structures, due to the methods used for manufacturing
and assembling structures.

To obtain data on these statistical inaccuracies, a
mass experiment is required with the composition of
experimental distribution curves. The nature of these
curves can also be determined theoretically. Assuming
the approximation of the calculation, it is also possible
to use statistical characteristics: the average value, the
standard, sometimes the asymmetry coefficient.

With this approach, the condition for failure-free
operation (non-destructibility) of the structure has the
following form:

Y=R-S>0 @)

where R is generalized random bearing capacity of the
structure; S is generalized random load on the

structure; Y is characteristic, which was introduced by
A.R. Rzhanitsyn and called the strength reserve.

The mathematical expectation and the standard of
the strength reserve are defined as for a linear function:

Y=R-S: Y=+VR*+S§? 5)

The parameter equal to f= Y / );was called the

safety characteristic (A.R. Rzhanitsyn [6]) or the safety
index (C.A. Cornell [7]), they establish the probability
of failure (Q) and failure-free operation (P) especially
simply in the case of a normal distribution of the
strength reserve Y:

oY <0)=05-d(8), P(Y>0)=05+d(s),
(6)

where (D(ﬁ) is Laplace function.

A.R. Rzhanitsyn formulated the basic concept of
this method as follows: “Having obtained with a certain
degree of accuracy the desired statistical set, for
example, the distribution of the bearing capacity of a

structure, we can stop at such a minimum value of this
bearing capacity, which has a certain reasonable, very
small probability of its occurrence. This value can be
taken as the permissible bearing capacity, according to
which the load on this structure should be assigned” [1].
For that time (1940—1950), this approach was perceived
as bold and truly revolutionary.

In this case, the safety factor k& was related to the
safety characteristic by the following formula

B=k-1) V7 +v7 7

where £ is the safety factor equal to the ratio of the
average expected bearing capacity to the average

expected working stresses; V., Vq are the coefficients

of variation of the bearing capacity and load; /£ is the

safety characteristic, which depends on the probability
of failure.

In the design codes, the coefficients of uniformity
and load are defined as

k0=1—]/V;,; knzl—l_qu';

After substituting into formula (7) the expressions

of V..V, through the coefficients of uniformity and

load, the following equation was obtained for the safety
factor:

11—k, (2 ko 2 k,)

k
ko(2—k,)

®)

If we accept k =k,/k,, then this gives inflated

safety factors for the same safety characteristic. A.R.
Rzhanitsyn confirmed this with a numerical example of
calculating a steel roof span [1].

The preparation and start of using calculations
based on limit states (1950s) activated supporters of
fully statistical design methods. The same A.R.
Rzhanitsyn rightly emphasized the shortcomings of the
new method [5]:

« all limit states are considered the same for all types
of buildings and all elements;

* incorrect consideration of the joint statistical
spread of several quantities included in the calculation
formulas, with the adjustment of new results to the
results according to the old codes.

As an alternative, a statistical method was proposed
with the following main provisions:

« the conditional probability of passing through the
limit state is normalized, the parameter of probability is
the safety characteristic #, equal to the number of

standard deviations from the mean value;
» approximate differentiated values f=2-4,5 are

proposed for buildings and structures of different
capital and responsibility (apparently for the first time);
» taking the appropriate S , the load coefficient &,

uniformity coefficient ko and the resulting safety factor
k are determined by formula (8).
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the author's statistical method. In it, he rightly noted
that all the quantities included in the calculation of
structures (loads, yield strength of steel, geometric
characteristics of the cross-section of elements,
coefficient for centrally compressed elements) are
random. However, he categorically stated that all their
deviations from the average values obey the normal
distribution law. This statement, which is valid for the
yield strength, crane loads, geometric characteristics,
random imperfections, was unreasonably extended to
snow and wind loads. The developed general method
was illustrated by the example of a centrally
compressed steel rod with a cross-sectional area F' and
the sum of the acting loads ) P. An auxiliary quantity

was introduced that characterizes the degree of use of
the bearing capacity of the rod material, similar to the
strength reserve according to A.R. Rzhanitsyn:

R=oy,—-0=0;,-YP|F ©)

where O7 is the yield strength of the steel.

The quantity R as a function of random variables is
also a random variable with a mean value equal to zero
(which cannot be agreed with). Using the linearization
operation, which later became widespread, the
deviation of the function R was calculated with respect
to the deviations of its arguments:

2 2 2
AR = || 2R Ao-%+2[a—Rj AP2+(6—RJ AF?
f) oP

or

The notation o = ko is introduced. Then it turns
out that

AR =c; —o =op(1-k),

and the equation for determining the coefficient &
takes the final form:

(1-ky :kz[zApz AFZ}

+ Aa% .
o pr?  F?

5
T

(10)

Here £ is the reciprocal of the safety factor, which
guarantees that in the elements of a steel structure
during its unlimited long-term operation (an unfounded
statement) the stresses from the loads will not reach the
yield point with the same probability as deviations
Ao, AP, AF exceeding their maximum possible values

accepted in the calculation may appear.

Expressions were obtained for cases of transverse
bending, central and eccentric compression (tension),
which have a similar form. As a general result, the
values of the normative stress for various cases of the
action of forces on the structure were proposed. For
their justification, the well-known criterion "three
sigma" was used, which corresponds to the probability
of two-sided excess - 0.00272, one-sided - 0.00136.
The obtained differentiated values of the coefficient
k <1 are given (without sufficient justification). Thus,
in their proposals B.1. Belyaev conservatively remained
within the framework of the allowable stress method,

trying to show that his method is more economical than
the limit state method.

Later, B.I. Belyaev applied the general approach
outlined above to reinforced concrete bending and
compression elements, bulky formulas were obtained,
and numerical examples performed according to them
showed savings of 11 - 22% [5].

The proposals of A.R. Rzhanitsyn and B.I. Belyaev
to build a system of reserve factors entirely on the basis
of the statistical method did not receive support either
in the 1950s or later, although it was recognized as
expedient to use mathematical statistics as an important
auxiliary tool.

B.I. Belyaev continued the struggle for his
statistical method of calculating building structures
(1965) [5], considering in detail the following remarks
of opponents of the statistical method:

a) a very long work is required to collect initial
statistical data for a reliable choice of the laws of
distribution of random arguments, especially the “tail
parts”;

b) random parameters that determine the operation
of the structure are divided into “constant” ones that do
not change with time (resistance of materials,
geometric parameters, constant loads), and temporary
loads that act repeatedly; it is believed that they are so
fundamentally different that for their joint
consideration it is impossible to accept the laws of
probability theory;

¢) in the statistical method a single safety
characteristic £ =3 1is accepted, although for different

distribution laws it corresponds to a different
probability of exceedance;

d) the destruction of a structure cannot be a mass
event, and the statistical interpretation of its probability
loses its meaning; in addition, homogeneous conditions
for the operation of a structure are rarely feasible
(remarks of V.V. Bolotin).

Objections of B.I. Belyaev to the above remarks.

a) Laws of distribution of random variables. A
significant part of the calculated variables is normally
distributed (resistance of materials, volumetric weights
of materials, geometric parameters of the section,
random distortions). Temporary loads (atmospheric,
temperature, crane) can be considered as statistical sets
of maxima described by the theory of distributions of
extreme members of the sample. For this purpose, it is
proposed to use the indicative law, which is
successfully used by meteorologists for wind speeds.

b) Multiple loading of the structure with temporary
loads. 1t is proposed to replace them with equivalent
single loads with changed average and standard.

c) The value of the safety characteristic. It is
justified by examples that £ can be applied according

to the normal law for both indicative and lognormal
distributions.

d) The method of calculating structures is not based
on the statistics of structural failures. The operation of
structures made of materials with random properties
under the action of random loads is certainly a mass
phenomenon. “This phenomenon is repeatedly realized
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in practically homogeneous conditions (material,
load)”.

B.I. Belyaev concluded his publication with an
optimistic conclusion: “We can hope that objections to
the statistical method of calculating building structures
will be removed and this progressive method will find
application in design practice” [5]. As we now know,
these hopes were not destined to come true.

In 1967, A.R. Rzhanitsyn published a brief review
(bibliography of 29 sources) of the development of
probabilistic methods for calculating structures. He
noted that the current codes for calculating structures
do not reflect the random nature of loads fully enough,
and he built a bridge to the theory of reliability of
construction objects: "The entire set of probabilistic
calculations of structures for strength is sometimes
called the theory of reliability of buildings and
structures, adding here the issue of changes in
suitability over time due to corrosion, aging of the
material, etc. The theory of reliability in construction
has not yet gained much development, but is
successfully used to solve problems in mechanical
engineering and the operation of various devices."

Later (1973) A.R. Rzhanitsyn continued the
development of the probabilistic method and solved the
problem of determining the economically justified
reliability of a structure [5]. The costs associated with
the construction of a structure and its possible damage
during a given service life are determined as

R=C+VV; (11

where C is the initial cost of construction of the
structure; V is the probability of its damage; ¥ are the
losses caused by this damage, which include the cost of
restoration and the losses caused by the disruption of
the operation process.

Next, the minimum mathematical expectation of
these costs is found, the condition of which has the
form:

OR/OC =1+VaYV/oC+VaV/oC=0. (12)

Usually, losses V can be considered independent of
the initial cost of the structure, therefore 0Y/0C =0 .

Then, taking into account V' =1—P (P is security), we
get 0C/oP =Y . This condition allows us to choose

optimal security for each limit state. The developed
methodology was illustrated by a numerical example
for a pavement span.

Moving on to the 1990s, we would like to
emphasize that with the collapse of the USSR, the new
states had the opportunity to move away from the crude
Soviet construction codes and develop their own, more
adequate regulatory documents. Ukrainian specialists,
unlike Russian developers of codes, prepared the
fundamental State Construction Codes DBN B.1.2-14-
2009 “General Principles for Ensuring Reliability and
Constructive Safety of Buildings and Structures” [15],
which took into account the acquired international
experience and significantly and deeply developed the
basic principles of the probabilistic method of

structural calculation. For the first time, the possibility
of using probabilistic methods to assess the level of
structural reliability was allowed in the presence of
sufficient statistical information for unique and
especially important structures.

The above-described probabilistic model based on
random variables (4) is implemented in domestic codes
[15] in a slightly different form and with different
notations. The design conditions for the realization of
failure in a generalized form are written in the form of
a workability function g, which takes into account the

parameters X, that characterize the random values of

the effects F , strength characteristics f , geometric
characteristics & , time 7 and other factors:

g(X,eX,) <O0.

(13)

The main reliability indicator is the probability of
failure Pf(Tey, i.e. the probability that a failure of a
given type will occur within a set time

P (T,) = Prob{g(il,...,in) < O/Tef} ., (14)

where the symbol Prob{A/T} defines the probability of
event 4 occurring during time 7.

The codes [15] also allow for the characterization of
reliability by the failure range p, approximately
corresponded to the probability Pr by the relation

p=0"'(1-P), (15)

where  ®(z)

probability distribution of workability g .
When using the normal probability distribution in

is the function of the normalized

calculations, the function ®(z) can be defined as an
integral of probabilities

D(z)=057" J.exp[—u2 /2)du .

—00

(16)

Regulatory requirements for reliability are
formulated using the calculation condition for the
realization of failure (13) and the probability of its
implementation (14) in the form

P,,(T,;) = Problg,(%....%,) < 0/ T, |< P,
a7
where g; is the workability function with respect to the

failure of the i-th type; Plax is the appropriate value of
the probability of failure of the i-th type, which is
accepted according to the DBN codes [15].

If the failure range f is used, then instead of (17) the
condition is accepted

Bz BT, (18)

where the appropriate value ,Bl-ex for the i-th type of

failure i1s taken in accordance with the
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recommendations of DBN [15] or in accordance with
the accepted appropriate probability of failure.

A recommendation was given for structures whose
failure leads only to economic losses to assign values

P and S based on the condition of minimizing the

total costs of their manufacture, installation, operation
and elimination of losses from a possible failure.

For mastering practical probabilistic calculations
using the above algorithm, the monograph [6] is
recommended.

DBN V.1.2-14-2009 also provides a variant of
probabilistic calculation taking into account the time
factor. This modern approach was based on the results
of research conducted by the scientific school
"Reliability of Building Structures", which has been
working for many years at the National University "
Yuri Kondratyuk Poltava Polytechnic" [12]. A
probabilistic model of random processes was

successfully applied, in which in expression (3) S ®)is
effort (or stress) in the structure in the form of a random

process; R(¢)is a random process or a random value

R of the bearing capacity; Y (¢) is a random process of

the structure strength reserve. Under such conditions,
the failure of the structure is interpreted as the emission

of a random effort S (¢) for a random level of the
bearing capacity INQ(I) or as the emission of a random

process Y (¢) into the negative region.

If the load and bearing capacity are described by
stationary or quasi-stationary stochastic processes, the
estimate of the probability of structural failure can be
determined from the number of emissions N, (¢) as

_ a)qu(ﬂ)t )
B2

This formula was obtained in [6], it adopts the

19

following notations: @, is an effective frequency of the

random process of the strength reserve; fy(f3)is the

ordinate of the density distribution function of the

strength reserve Y (t) , which corresponds to the value

of the safety characteristic £ ; ¢ is a design life; 3, is

the broadband coefficient of the random process Y ®

If E(t) and S () are normally distributed, then

Y (t) also has a normal distribution, and the formula
for Q(t) takes the following form

Q(t) = @, exp (— 0,5,821)/(27r,6’w). (20)

On the base of the formula (20) and the normative
value of the failure probability [Q] , it is easy to
determine the corresponding safety characteristic

B =P,/ (2=[0]8, )V . Q1)

The presented method is included in the codes [15]
in the following form: the probability of failure of the
structure during the established service life T is
defined as

Pf(Tejf) = Kofy(ﬂ)nf .

Here it is denoted: f,(f)is the density of the
normalized distribution of random values of the value

of the strength reserve Y=R-§ at a value
corresponding to the failure range (safety

(22)

characteristic) f3; K, is the frequency characteristic,
which is calculated by the formula
1/2
S.a.K"w,)?
3 (1 + 92k2) E(Slal 1 a)l)

K
0 3| 2201+ 01+ KA (P +52)

In this formula it is indicated: w; is effective
frequency of the i-th impact; Kl»tr is trend coefficient,

which takes into account seasonal changes of the i-th
impact (for example, snow and wind loads); 6 is ratio
of the effective frequency of the highest frequency of
the loads taken into account (for example, crane) to the
second in decreasing effective frequency (for example,

wind load frequency); k= 50/\/52 +7 _53 is

coefficient, which characterizes the contribution of the
standard of the highest frequency load taken into
account to the standard of the strength reserve.

The current view on the prospects of transition to
a new generation of design standards built on a
probabilistic basis is set out in a monograph published
by A.V. Perelmuter together with the author of the
article [14]. It is emphasized that it is generally
accepted that safety margins are intended to
compensate for five main types of failure causes:

1) loads have higher values than expected;

2) the material has worse properties than expected;

3) the theory of the analysed failure mechanism is
imperfect;

4) the possible manifestation of unknown and
therefore unaccounted for causes of failure;

5) possible human errors (for example, in the
project).

The first two options can be generally classified as
variability of design parameters; therefore, they are
available for probabilistic assessment. The last three
types of failure causes operate not with probabilities,
but with possibilities, they are difficult or even
impossible to present in probabilistic terms, and
therefore they belong to the category of non-statistical
uncertainty.

The first and perhaps most important argument in
favour of probabilistic methods is that they can be the
basis for economic optimization. There is, for example,
no way to numerically estimate the difference in safety

10 ISSN: 2518-1106(online)
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between the case of using a safety factor of 2.0 and a
safety factor of 3.0. And without a measurable effect
(such as a reduction in the expected number of
accidents), it is impossible to establish the value of the
change in risk, and therefore economic optimization of
the project is impossible. On the contrary, statistical
analysis determines as a result the probability of an
accident, which allows calculating the expected profit
for a safer project. This is what is needed to optimize
the ratio between the risks of losses and revenues.
These considerations are taken into account in DBN
B.1.2-14-2018 “General principles for ensuring the
reliability and structural safety of buildings and
structures” [16] in the procedure for predicting possible
emergency situations and assessing the risk of damage
in the following expanded format:

P=P(H)xP(4/H)xP(T/H)x P(D/H)xC , (23)

where P(H) is the probability of occurrence of a
hazardous event or phenomenon; P(A/H) and P(T/H)
are the probabilities of encountering a hazard with an
object in space and time, respectively; P(D/H) is the
probability that threat H will cause damage D; C are the
relative losses.

The second argument in favour of probabilistic
approaches is their supposed ability to provide a more
integrated assessment of the safety of the system as a
whole. For example, logical-probabilistic assessment
takes into account the comparison of the behaviour of
different elements of the system, which allows us to
indicate the significance, contributions and specific
contribution of elements to the overall reliability
indicator. Probabilistic approaches therefore seem
suitable for identifying critical elements and building a
maintenance scheme [17].

It should be emphasized that there are two
different interpretations of failure probabilities
calculated using statistical analysis. One of them
considers the calculated probabilities as relative indices
of failure probabilities, which can be compared both
with some normalized value and with the
corresponding values for alternative project options.

Within the second interpretation, the results of
statistical analysis are perceived as objective values of
the probability of failure. According to this view, these

probabilities should be used not as simple relative
indicators, but as qualitative estimates of the objective
frequency of possible events. However, failure
probabilities often contain their definitions based on
expert assessments, and such assessments are
inevitably subjective. In addition, some phenomena are
excluded from the analysis. In these cases, we cannot
compare the probability of failure of one facility with
another. For example, comparing the safety of a nuclear
power plant with the safety of a flood protection system
based only on the statistical analysis of such two
systems is an unreliable and incorrect decision, since
the system of their uncertainties is different and it is
difficult or even impossible to compare them.

One of the important features of probabilistic
methods is that they can take into account potential
negative factors only to the extent that their
probabilities can be reliably quantified. In practice,
these difficulties can lead to a one-sided bias in
attention to only those hazards for which there are
reasonable  probability  estimates. = Therefore,
probabilistic analysis tends to neglect potential events
for which it is impossible to obtain a probability value
for their realization.

Finally, we will quote from the [14]: “Returning to
the fact that the safety margin, as mentioned above, was
designed to compensate for the five main sources of
failure, it can be considered that in the first two cases it
is better to use probabilistic information. The main
advantage in assigning safety margin factors on a non-
statistical basis concerns the other three sources of
failure. Therefore, the probabilistic approach should be
only one of several tools for risk assessment. It is clear
that both approaches have their own advantages, and it
is unconstructive to view them as competitors, since
neither can reveal the whole truth about risk and
safety”.

Conclusions

The long-term experience of developing
probabilistic (statistical) approaches to the calculations
of building structures is analyzed. The range of tasks
for which statistical solution models are inherent is
outlined. The prospects of the results of this scientific
direction in creating a new generation of design
standards are emphasized.

References

1. Pichugin Sergii (2022). The allowable stress method
is the basis of the modern method of calculating building
structures according to limit states. Academic journal
Industrial Machine Building, Civil Engineering, 1 (58),
17-32 https://doi.org/10.26906/znp.2022.58.3078.

2. Freudenthal A.M. (1947). The Safety of Structures.
Proceedings ASCE, 112.1, 125-180

3. Wierzbicki W. (1936). Safety of Structures as a
Probability Problem. Przeglad Techniczny, 690-696

4. iuyrin C.®., Maxineko A.B. (2003). Bukopucranus
KOHIeNIii «rapaHTtii HepyHHIBHOCTI» B  OLIHKax
HaJiMHOCTI ~ METaleBHX  KOHCTPYKIIiH. Memanesi
xoncmpyxyii, 6.1,19-26

1. Pichugin Sergii (2022). The allowable stress method is the
basis of the modern method of calculating building structures
according to limit states. Academic journal Industrial Machine
Building, Civil  Engineering, 1 (59), 17-32
https://doi.org/10.26906/znp.2022.58.3078.

2. Freudenthal A.M. (1947). The Safety of Structures.
Proceedings ASCE, 112.1,125-180

3. Wierzbicki W. (1936). Safety of Structures as a
Probability Problem. Przeglad Techniczny, 690-696

4. Pichugin S.F., Makhinko A.V. (2003). Using the concept
of "guarantee of non-destructibility" in assessing the reliability
of metal structures. Metal structures, 6.1, 19-26

Academic journal. Industrial Machine Building, Civil Engineering. - 1 (64)' 2025

ISSN: 2409-9074(print) l


https://doi.org/10.26906/znp.2022.58.3078
https://doi.org/10.26906/znp.2022.58.3078

5. Miayrin C.®. (2024). Emanu po3zeumky 3azanbhoi
MemoOUKU  PO3PAXYHKY — OYOieIbHUX — KOHCMPYKYIU.
[TonraBa: TOB «ACMI»

6. IMiayrin C.®. (2016). Pospaxynox Hadiinocmi
o6yodigenvHux koncmpykyii. [lonraBa: TOB « ACMI»

7. Cornell C.A. (1967). Bounds on the Reliability of
Structural Systems. Journal of the Structural Division,
ASCE, 93.ST, 171-200

8. Pichugin Sergii (2020). Statistical strength
characteristics of  building structures  materials.
ICBI: Proceedings of the 3rd International Conference
on Building Innovations, 313-330. DOI: 10.1007/978-3-
030-85043-2_30.

9. Pichugin Sergii (2020). Probabilistic basis
development of standartization of snow loads on building
structures. Academic journal Industrial Machine Building,
Civil Engineering, 2 (59), 5-14.
https://doi.org/10.26906/znp.2020.55.2335.

10. Pichugin Sergii (2021). Development of crane load
codes on the basis of experimental research. Academic
journal Industrial Machine Building, Civil Engineering, 1
(56), 18-29 https://doi.org/10.26906/znp.2021.56.2493

11. Pichugin Sergii (2021). Many years of experience of
standarding the medium component of wind load on
building structures. Academic journal Industrial Machine
Building,  Civil  Engineering, 2  (57), 5-13.
https://doi.org/10.26906/znp.2021.57.2579.

12. Pichugin Sergiy (2019). Scientific School «Reliability
of Building structures»: new results and perspectives.
Academic journal Industrial Machine Building, Civil
Engineering, 2 (53), 5-12

13. IlepensmyTtep A.B., ITiuyrin C.®. (2022). BigHocHo
HoBOoi pemakuii JBH B.1.2-14:2018. Hayxka ma
6yoisnuymso. 32.2, 19-29

14. Tlepensmytep A.B., Iiuyrin C.®. (2024). Memoo
paHuuHux — cmamie.  3aeanvhi  nONONCEHHA — ma
3acmocysants 6 Hopmax npoekmysannsi. K.: «Codis-A»

15. ABH B.1.2-14:2009 (2009). 3acaneni npunyunu
3abe3neyents HAOIIHOCMI Ma KOHCMPYKMUGHoI be3nexu
6ydigens, cnopyo, 0VOigenbHUX KOHCMPYKYI ma OCHOS.
K.: MinperionOyn Yxkpaian

16. JIbH B.1.2-14:2018 (2018). 3acanvni npunyunu
3a6e3neuents HadIHOCMI Ma KOHCMPYKMUBHOT Oe3neku
6yoisens i cnopyo. K.: Minperion Ykpainu

17. Sergii F. Pichugin, Viktop P. Chichulin, Ksenia V.
Chichulina (2019). Determination of the elements
significance in the reliability of redundant frames.
International Journal for Computational Civil and
Structural Engineering, 15(3), 109-119

5. Miayrin C.®. (2024). Development stages of general
methodology for building structure calculation. Poltava:
«ASMI»

6. MMiuyria C.®. (2016). Reliability calculation of building
structures. Poltava: «ASMI»

7. Cornell C.A. (1967). Bounds on the Reliability of
Structural Systems. Journal of the Structural Division, ASCE,
93.ST, 171-200

8. Pichugin Sergii (2020). Statistical strength characteristics
of building structures materials. /CBI: Proceedings of the
3rd International Conference on Building Innovations,
313-330. DOI: 10.1007/978-3-030-85043-2_30 .

9. Pichugin Sergii (2020). Probabilistic basis development
of standartization of snow loads on building structures.
Academic journal Industrial Machine Building, Civil
Engineering, 2 (55), 5-14.
https://doi.org/10.26906/znp.2020.55.2335.

10. Pichugin Sergii (2021). Development of crane load codes
on the basis of experimental research. Academic journal
Industrial Machine Building, Civil Engineering, 1 (56), 18-29
https://doi.org/10.26906/znp.2021.56.2493

11. Pichugin Sergii (2021). Many years of experience of
standarding the medium component of wind load on building
structures. Academic journal Industrial Machine Building,
Civil Engineering, 2 (57), 5-13.
https://doi.org/10.26906/znp.2021.57.2579.

12. Pichugin Sergiy (2019). Scientific School «Reliability of
Building structures»: new results and perspectives. Academic
journal Industrial Machine Building, Civil Engineering, 2
(53), 5-12

13. Perelmuter A.V., Pichugin S.F. (2022). Regarding the
new edition of DBN V.1.2-14:2018. Science and construction,
32.2,19-29

14. Perelmuter A.V., Pichugin S.F. (2024). Limit state
method. General provisions and application in design
standards K.: «Sofia-A»

15. DBN B.1.2-14:2009 (2009). General principles for
ensuring the reliability and structural safety of buildings,
structures, building structures and foundations. K.
Minregionalbud of Ukraine

16. DBN B.1.2-14:2018 (2018). General principles for
ensuring the reliability and structural safety of buildings and
structures. K.: Minregionalbud of Ukraine

17. Sergii F. Pichugin, Viktop P. Chichulin, Ksenia V.
Chichulina (2019). Determination of the elements significance
in the reliability of redundant frames. International Journal for
Computational Civil and Structural Engineering, 15(3), 109-
119

Suggested Citation:

APA style Pichugin, S. (2025). Development of the statistical approach to the calculation of building
structures. Academic  Journal  Industrial ~ Machine  Building Civil  Engineering, 1(64), 5-13.
https://doi.org/10.26906/znp.2025.64.3893

DSTU style Pichugin S. Development of the statistical approach to the calculation of building structure. Academic
Journal. Industrial Machine Building Civil Engineering. 2025. Vol. 64, iss. 1. P. 5-13. URL
https://doi.org/10.26906/znp.2025.64.3893.

12 ISSN: 2518-1106(online) Academic journal. Industrial Machine Building, Civil Engineering. - 1 (64)' 2025


https://link.springer.com/book/10.1007/978-3-030-85043-2
https://link.springer.com/book/10.1007/978-3-030-85043-2
https://doi.org/10.1007/978-3-030-85043-2_30
https://doi.org/10.1007/978-3-030-85043-2_30
https://doi.org/10.26906/znp.2020.55.2335
https://doi.org/10.26906/znp.2021.56.2493
https://doi.org/10.26906/znp.2021.57.2579
https://link.springer.com/book/10.1007/978-3-030-85043-2
https://link.springer.com/book/10.1007/978-3-030-85043-2
https://doi.org/10.1007/978-3-030-85043-2_30
https://doi.org/10.26906/znp.2020.55.2335
https://doi.org/10.26906/znp.2021.56.2493
https://doi.org/10.26906/znp.2021.57.2579
https://doi.org/10.26906/znp.2025.64.3893
https://doi.org/10.26906/znp.2025.64.3893

Hivyrin C.®. *
Hamionansauit yHiBepcuret «IlonTaBcrka nomitextika imeri FOpis Konnpatrokay»
https://orcid.org/0000-0001-8505-2130

Po3BuUTOK CTaTUCTUUHOrO Nigxoay A0 PO3pPaxyHKy
ByqniBenbHUX KOHCTPYKLI

AnHoTaujs. CyyacHuii MeTOA pO3paxyHKy OyAiBeJIbHHX KOHCTPYKIIH 3a 'PaHMYHHMH CTaHaMu (paHille 3a IO0MyCTUMHMH
Halpy>KeHHSIMH) € MO0 CyTi HamiBAMOBipHiCHUM. OCHOBHI TapaMeTpd METOAy — 3HAueHHS HaBaHTaKeHb, MIIlHICHI
XapaKTepHCTHKN MarepiajiB, pO3MIpH €IEeMEHTIB TOIIO — MAloTh 3MIHHHMH CTATHCTHYHHN XapakTep. BOHM ommcyroThcs
HMOBIpHICHIMH METOJ]aMH, Ha OCHOBI SIKUX OOIDYHTOBYIOTHCS IeTEpMiHOBaHI TapaMeTPH NPOESKTYBAHHS, SIKi B ITOJAIBIIOMY
BUKOPHCTOBYIOTBhCS B pO3paxyHKaxX. TOMy OCHOBHA yBara po3pOOHHMKIB HOpPM MPUIIISIACS HAKOIMMYECHHIO 1 CTATUCTHYHIN
00poO1i TaHUX LI0A0 OKPEMHUX KOMIOHEHTIB METOOMKH PO3paxyHKiB. MK THM, mapaienbHO 3 UM ABOICTUM METOIOM
MPOTATOM 0araThbOX POKiB PO3BUBAIMCS MOBHICTIO HMOBIpHICHI (CTaTHCTHYHI) MIAXOAM A0 PO3PaxXyHKIB, SKi MICTATH LiHHI
HAyKOB1 pe3yJIbTaTH, aKTyaJlbHi 1 B TemepimHiil yac. MeTol CTaTTi € MOCTIJOBHUHM PO3IISAN PO3pOOJCHUX Ha MPOTS3i
JIeB’STHOCTa POKIB MiAXOJIB 0 BIPOBA/DKCHHS 3aralbHUX HMOBIPHICHHX METOIIB pO3paxyHKy OyIiBeTbHHUX KOHCTPYKIIH.
TlowyaTkoM 11pOTO TIpOIIECY MOKHA BBaKaTH KiHenb 1930-X poKiB, KOJIM BiIOYBCS CIIpaBXHI HayKOBHI HACTYI Ha KOoe(ilieHT
3aracy, OCHOBY METOJy NOMYCTHMHUX HANpY>KCHb, SKUH 3MIMCHUIM BITYM3HSHI i 3aKOPJOHHI JOCIITHUKH, OYJIO BUSBICHO
IMOBIpHICHUI XapakTep Koe(illieHTa MIITHOCTI, IIPE/ICTaBICHOr0 B KAHOHI4HII (hopMi T0OYTKY (aKkTOpiB, i OTPHMAHO YHCIIOBI
3HAUeHHS TapaHTil HepyiHiBHOCTI KoHCTpykmii. 1950-1960-Ti pokm o3HaMeHyBamucs O€3yCHINIHUMH crpobaMu
NPUXWIBHUKIB IMOBIPHICHHX METOMIB BIPOBAIUTH B TIPAKTHKYy MPOEKTYBAaHHA KOHLEMIII0 pPE3epBy MIIHOCTI Ta
xapakTepucTikn Oe3meku. [lounHarounm 3 1970-x pp. BiTumsHsAHI (paxiBui aKTHBHO PO3POOISIOTH IMOBIPHICHI METOIH,
pe3yIbTaTH SKHX BIPOBAKYIOTHCI B HOPMATHBHI JOKYMEHTH. BimMmiueHO, 10 B OCTaHHI pOKH 3'SBWIMCS MyOJikamii 3
MPOTO3UIISAMUA IIOJO MOJAJBIIOTO BIPOBAPKEHHS IMOBIPHICHHX TIIXOAIB y po3paxyHKH. OKpecieHO KOJIo 3axad
OyIiBENBHOTO MPOEKTYBAHHS, U SIKMX IIPUTAMaHHI caMe CTaTHCTHYHI Mozeli po3s’si3aHHsL. [TinkpecieHo nepcneKTHBHICT
PEe3yJIBTaTIB I[LOTO HAYKOBOT'O HAIPSIMKY y CTBOPEHHI HOBOTO MOKOJIHHS HOPM NPOEKTYBaHHS Oy NiBEIbHIX KOHCTPYKIIIH.

Knto4oBi cnioBa: iiMOBIpHiCHI METO/IH, CTATHCTHYHI METO/IN, HOPMH MPOEKTYBAHH, KOe(ili€HT 3amacy, rpaHuYHi CTaHH

*Anpeca s muctyBanHA E-mail: pichugin.sf@gmail.com

MpuiHaTo no
05.03.2025 apyky nicna  10.04.2025
peLeH3yBaHHs:

HapjcnaHo oo
pepaKuii:

Ony6nikoBaHo

" 26.06.2025
(onpuniopHeHo):

Academic journal. Industrial Machine Building, Civil Engineering. - 1 (64)' 2025 ISSN: 2409-9074(print) 13


https://orcid.org/0000-0001-8505-2130
mailto:pichugin.sf@gmail.com

