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The paper is dedicated to the creation of a differential mortar pump with electromagnetic action for pumping finishing
material, which is not sensitive to electric energy gaps, and which is at the same time convenient, easy to use, reliable and
economical in operation. The paper presents the mathematical model of the working process dynamics of a differential
mortar pump with electromagnetic action, which will allow to study common patterns of pumping processes in the pump in
the whole, to solve general problems on their calculation and design, to set and solve problems of reliability control,
connected with high-frequency pressure oscillations, the problems of structural optimization and optimal design of all its
elements. The control system of a pumping unit with vector controlled asynchronous electric drive is proposed on the basis of
the concept of inverse dynamics problems in combination with the minimization of local functionality of instantaneous
energy magnitudes, which ensures high-quality pressure regulation under the conditions of parametric perturbations activity
and has acceptable energy indices.
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Po6oTy mpuCBsSYEeHO CTBOPEHHIO AU(EpEeHLiaIbHOTO HACOCa SNEeKTPOMArHITHOL Aii Ul MepeKadyyBaHHs 037100II0BaIbHOTO
Mmarepiaiy, sSIKUi He YyTJIMBHI 10 MepernaziB eJIeKTPOCHepril, 3py4YHuii 1 mpocTHil y BUKOPUCTAaHHI, HAaAIHUI Ta eKOHOMIY-
HMIT B ekciuryaTanii. Po3riasHyTo pe3ynbTaTH MaTeMaTHYHOTO MOJIENIOBAHHS HECTalllOHApHUX IIPOLECiB Y HACOCHOMY arpe-
rati 3 OZHOIOPIIHEBUM TUpepeHLiaIbHIM HacOCOM eJleKTpoMarHiTHOI aii. [IpoaHanizoBaHO MOZEINb, 1[0 MICTUTH PiBHSHHS
PYXy €JIEeMEHTIB CHCTEMH, KOTPi BPaXxOBYIOTh HECTAJIICTh 3BEAEHOI0 MOMEHTY iHepIii IITOKOBOrO MeXaHi3My Hacoca, a Ta-
KOXX €JIeKTPOMArHiTHI SBUIA B €JIEKTPOMATHITHIM KOTyIIIi. 3alpOIOHOBAaHO MAaTEeMaTHYHy MOJENb JHHAMIKH poOOdoro
nporecy nudepeHIiaTIbHOr0 Hacoca eJISKTPOMArHIiTHOT Aii, sika JO3BOJIUTH AOCTIPKYBaTH 3arajibHi 3aKOHOMIPHOCTI IepeKa-
YyBaJBHUX IPOLECIB y HAcoci B IUIOMY, PO3B’SI3yBaTH 3arajbHi 3agadi 3 IX pO3paxyHKy 1 HpPOEKTYBaHHS, CTaBHUTH 1
pO3B’s13yBaTH 3aa4i 3abe3meueH s HaJifHOCTI, OB’ s3aHi 3 BUCOKOYAaCTOTHUMH KOJIMBAHHSMH THUCKY, 3a/1a4i onTumizawii il
CTPYKTYPH ¥ ONTHMAIbHOTO NPOSKTYBAaHHS BCiX ii eneMeHTiB. Pe3ynbratu po3B’si3aHHs AudepeHialbHuX PiBHIHD MaTeMa-
TUYHOT MOJIETTi, OTPUMaHIi y Wil CTaTTi, MOXKYTh OyTH PEKOMEHAOBAHO /TS HPAKTUYHOI peanizallii y BUIIIAAI aHAIITHYHHUX 3a-
JIGKHOCTEH IPH PO3POOJICHHI METOIUKK PO3PaXyHKY [UIsl CTBOPEHHS HOBHUX KOHCTPYKLIH qudepeHIiaTbHIX HACOCIB eNeKT-
pomarHiTHOT i Ta OIiHIOBaHHS iX e()eKTUBHOCTI. 3aIPOIIOHOBAHO CHCTEMY KEpYBaHHS HACOCHOIO YCTAaHOBKOIO 3 BEKTOPHO-
KEepOBAaHUM aCHHXPOHHHM €JICKTPOIIPUBOJOM Ha OCHOBI KOHIIETIIIT 3BOPOTHHX 3aJad JUMHAMIKM B MO€IHAHHI 3 MiHIMI3aIli€ero
JIOKaJIbHUX (DYHKIIOHAIB MUTTEBHUX 3HA4€Hb CHEPTii, sika 3a0e3reuye sKiCHe peryIoBaHHS HAllopy B yMOBax Jil mapaMer-
pHYHUX 30ypeHb Ta Ma€ 3aI0BUIbHI €HEPTeTHYHI TOKA3HUKN.

Kumouogi ciioBa: mudepeHuianbHUi HACOC eIEKTPOMArHITHOL Aii, MaTeMaTHYHEe MO/ICTIOBaHHS, OyIiBebHA CyMill
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Introduction

Academic specialists have been researching mortar
pumps from 1950-es onward. Notwithstanding that
scientific works of that period remain fundamental,
they do not contain complete analysis of differential
mortar pumps owith electromagnetic action, but only
describe their work and design in general.

The basis for the improvement of the effectiveness
of a differential mortar pump with electromagnetic
action is improvement of the power efficiency
required to maintain constrained oscillations and
immunity to electric energy gaps.

Review of research sources and publications

Creating efficient pumping equipment is a vexed
problem for pumping production sphere, as over the
past 10 years mostly obsolete technologies have been
used in the field of pumping equipment manufacture.
At present, the crucial task is to create a differential
mortar pump with electromagnetic action [7 — 14],
fit for effective work, as well as to produce a
mathematical model [1 — 4], which, in its turn, would
describe the overall operation of a differential mortar
pump with electromagnetic action. The effective work
is the ability of the pump to provide the maximum
possible efficiency factor, which, in its turn, depends
on the interaction between the coil and the plunger
[5, 6], and, as a consequence — to support high
performance reliability.

Thus, differential mortar pumps with electro-
magnetic action are one of the most common pump
types, their constructional diversity is extremely high.
Obtaining the required quality of a differential pump
of electromagnetic action is a current problem, which
is of great importance for the development of pumping
production sphere.

Problem statement

In accordance with the abovementioned, the purpose
of the article is to increase the running efficiency of a
differential mortar pump with electromagnetic action.
In order to achieve this goal, we have solved the
following task: to create a mathematical model of the
influence of electromagnetic induction on the
uniformity of the construction mix pumping.

Basic material and results

Let’s consider the construction of a differential
mortar pump with electromagnetic action for the
construction mix, pictured in Fig. 1.

The mortar pump works as follows. Electric current
that changes along the sinusoidal wave and induces
magnetic induction onto the plunger, drawing it into
the middle of the coil, enters into the coil 3.
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Figure 1 — The structure of the differential mortar pump
with electromagnetic action for construction mix pumping:
1 — plunger, 2 — pump body; 3 — coil; 4 — coil flux guide; 5 — suction chamber; 6 — compensating spring;
7 — working spring; 8 — sniffle valve; 9 — discharge valve; 10 — compensating chamber;
11,12 — discharge fitting and suction fitting; 13,14 — lip-type seal

The first cycle of pumping. The plunger starts to
move leftward, closing the sniffle valve (t1) and open-
ing the discharge valve (t2). When the pump cavity is
filled with mortar mix, the pumping process begins
and the pressure in the discharge fitting starts to in-
crease. The higher the motion speed of the plunger is,
the more the pressure increases.

At the same time, the working spring 7 begins to
shrink and the compensating spring 6 starts to

straighten out. When the electric current in the coil
falls, magnetic induction decreases and simultane-
ously the motion speed of the plunger declines until it
stops. However, the plunger stops a little earlier before
the complete shutdown of magnetic induction, when
there occurs the balance moment of magnetic induc-
tion and compression force of the working spring 7.
When the sinusoidal wave changes its direction, the
diode in the power supply scheme cuts off its lower
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part, and in the second cycle, magnetic induction does
not affect the plunger.

The second cycle of pumping. The working spring
begins to straighten out, resulting in the opposite mo-
tion when the plunger is moving. The motion speed of
the plunger begins to increase. When the plunger is
moving to the right, the discharge valve 9 is closed
and the pumping process is reactivated. Pumping pres-
sure increases in proportion to the increase in path ve-
locity.

At the same time, the sniffle valve 8 is opened and
the working fluid is absorbed into the working cavity
of the mortar pump. With the displacement of the
plunger to the right, the working spring 7 compression
is weakened. Straightening of the working spring is
prevented by the pumping effort of the working fluid,
the effort of absorbing the fluid into the working
chamber and by the compensating spring compres-
sion. With the slackening of the working spring, the
motion speed of the plunger decreases and coinci-
dently the pumping process is reduced. By the mo-
ment the plunger stops, voltage is again applied into
the coil, and the pumping process is rerun.
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Figure 2 — Computational scheme

Due to the fact that the motion of the point particle
along the axis Oy is absent, then in accordance with
the III-d Newton's law of motion

G=-N,
where G = mg — gravity force, and N - normal re-
sponse of the walls of the pump body.

Thus, forces G and N form a balanced system of
forces {é,ﬁ }, which we shove aside on the basis of

the corresponding axiom of statics, without breaking
down the kinematic state of the point particle under
consideration.

As a result, we have forces that have affect on the
point particle (see figure 2, b):

— moving force Q ;
— elastic forces 13,7 and 13,6 of the compensating
spring 6 and the working spring 7 accordingly;
— motion resistance force F(m .
Let’s find out the meaning of these forces.

Let’s consider mortar pump operation separately for
each cycle.

The first cycle of pumping. Plunger movement to
the left. Since the plunger | moves progressively,
then, making a mathematical model of its mechanical
motion, we will consider it as a point particle, the
mass of which is equal to the mass m of the plunger.

Let's consider the motion of a point particle to the
left from its full distance right position, which is pic-
tured in Fig. 2 and we will make a computational
scheme of this motion, combining the coordinate ori-
gin Oxy with the initial position of the point particle
and pointing the axis Ox toward the direction of parti-
cle motion. With such a choice of reference system

X =0 and x, =0,
where x, — the coordinate position that determines the
position of the point particle at the time ¢, =0,
X, — the projection onto the axis Ox of the initial ve-
locity v, (of course, taking into account that v, =0,
then x,=0).

for leftward plunger movement

The module Q of the moving force changes sinusoi-
dally similarly to the change of electric current by vir-
tue of

Q=0,-sinpt,
where Q, — the peak value of the moving force (need-

less to say, the dimension [Q]=[Q,]= MLT™),

p — the cyclic frequency of the moving force, which is
equal to the number of complete cycles of moving
force variation per 27z seconds, and, of course, it is
equal to the cyclic frequency of the electric current
change.

In accordance with Hooke law, modules of elastic

forces ﬁﬂ and ﬁ,() of the compensating spring 6 and

the working spring 7 determine the following depend-
encies

Fr’] = C7 Aé’] al’ld Fr6 :C() 'Af() N
where ¢; and ¢4 — the spring rate of the compensat-
ing spring 6 and the working spring 7
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Al,, Alg — their deformation in the position of the

point particle at any given time ¢, pictured in Fig. 2.

The physical content of the coefficients ¢; and ¢ —
the elastic force value of each spring under deforma-
tion, set to unity, and their dimensions are the ratio of
the force dimension MLT™ to the length dimension L,
that is

fer]=lee] ==

From Fig. 2, b it is obvious that

=M-T2.

Al =x,

Alg="Lguep. = Lo ="Leeo. _(x+g6):€(me(). —X—G6>

where x — the coordinate, which determines the posi-
tion of the point particle at the time ¢,
l,e0. — the length of the undeformed spring 6 ¢, —

the length of this spring at the time ¢
¢¢ — the length of this spring in the initial position of

the point particle (at the time 7, =0).
Taking into account the set values A¢, and Alg,
we will get

Fo7=c7x,

F.e =c¢s '(féneo._x_%)-

Since the plunger 1 in the stationary medium — in
mortar mix, which fills mortar pump’s working cavity,
performs progressive motion at low speed, then the
motion resistance force will be in opposition to the di-
rection of the plunger velocity vector v and in vector
form it can be written as:

F on = —F, on ' l s

v
where F,,, — the absolute value (module) of this force;
v — plunger velocity module 1.

With the help of dimensional method [1] we will de-
fine the module value F,, of mortar mix resistance
force. In initial approximation we will assume that this
force, which dimension is [F,,] = MLT?, is deter-
mined by the following parameters, which, of course,
are physical values:

v — the plunger motion speed, the dimension of which
is[v]=LT";

S — the area of the plunger pressure on the operating
environment (mortar mix), the dimension of which is
[S]="L%

1 — the absolute viscosity coefficient, the dimension of
which is [1] = ML'T"".

According to [2], we will seek functional relation-
ship F,, = f(v,S, 1) in the form:

Fon:k'va'Sb'/uC9 (1)
where k& — some nondimensional coefficient (viz

[k]z 1), which cannot be determined by use of dimen-
sional analysis.

According to the theory of dimensional analysis, be-
tween dimensions [Fon], [v], [S ] and [,u] there must
be functional connection similar to the association be-
tween physical values F,,, v, S and g, which is de-
termined by formula (1). From this, we have that

[Fu)= k)Y -[ST [k

or, taking into account the above-mentioned dimen-
sions,

mer =1 (e (2 (T

Having completed the obvious transformations of
the right side, we will obtain

MLT—Z _ La+2b—c LT ALC

Since the mathematically obtained dependence can
be fulfilled only if power coefficients of the corre-
sponding multiplicators are equal, then, making the
specified indicators equal, we will obtain the system
of algebraic equations:

Having solved this system of algebraic equations,
we will find that

c=1l,a=2-c=2-1=1
and

b l-a+c 1-1+1 1

2 2 2

Then the desired dependence (1) will have the form
1

F, :k-vl-SE-,u1

or
Fo=k-V-puAs.

From Fig. 1 it is clear that when the plunger 1 moves
to the left, the area S of its pressure on the operating
environment (mortar mix) will be determined by the
formula

g dlz ’

4
where d; — the diameter of the plunger in the working

chamber (see Fig. 3).

Figure 3 — Diagrammatic representation
of the plunger 1

If we take d,,, =y-d;, where y — a certain “diame-
ter reduction factor” (of course, that y <1), then

Sz%-(dlz—}/z-dlz)=”'lez-(l—72).

Then finally we will get that
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2
Fun:k'v:u ﬂ.dl (1_7/2):
4
Ckveoped e \l-y?
2
or
1_2
F=k Y220 yd, .,

In the general case, the coefficient £ in the resis-
tance force formula for the resistance F,, of the me-

dium is in the functional relationship to the Reynolds
number (Reynolds criterion) Re and to the Froude
number F,,, that is

k =f(Re, Fr).

According to [3], «the mathematical relation
k=f(Re, Fr) is complex and its extremely difficult to
obtain it theoretically. It is common practice to use
experimentally obtained values of the coefficient & ».
But in the case under consideration, when the distance
and motion speed of the point particle are insignifi-
cant, we will neglect the dependence k = f(Re, Fr), as-
suming that k = const.

Following the algorithm of solving the inverse pri-
mal dynamic problem of the point particle [4], we will
compose the differential equation of motion of the
point particle under the question.

We will record Newton's second law of motion (sec-
ond principle of dynamics) in the projection on the
axis Ox.

From the computational scheme (see Fig. 2, b) it is
obvious that

A
ZF;'x :Q+Fr6_Fr7_Fon (2)
i=1
or, taking into consideration the found force values,
A . Tt
ZFD: =0 'SmTJFCe '(feuea. —x_é-'e)—
i=1

7r~1—7/2

¢y x—k- pedy v,

Then
z . mt
ZF;'x:QO'Sln T +Cé'(€6ue0._x_g6)_
i=1

2

_c7.x_k. .lu.dl.v:

T-\l-y
2
. Tt
:Q0'51n7—06'x+06’(€6m._§6)—

A1=42
—c, x—k- e pedy v =

. -t
:Qo-sm”T—(% +C7)'x+c6'(€6+¢eo._g6)_

2

Substituting the last expression and the value

a, :% into formula (2), we will obtain the differen-

tial equation of point particle motion in the form

m-ﬂ:QO-sin”—'t—(c6 +c7)-x+
dt T

7[1—}/2 ’

+Cé'(€6713()._g6)_k' b '/,l'dl’V

and, dividing both parts of it into m and carrying out
legitimate transformations, we will get

dv_Q o 7wt (eote)
dt  m T m
- 1—;/2

+Cé-(€6;:()__g6)_k' - ',Ll'dl'V

X+

and
C6 + C7

A1=42
ﬂ_{_k ﬂ. ]/ .#.dl.‘;_{_— X =
dt 2-m m (3)
) (e -
:&.sin”_t_i_cé (6Hed. gé)
m T m

The deduced equation (3) is the differential equa-
tion of plunger movement 1 to the left in the canonical
form or the mathematical model of this mechanical
motion.

If we introduce the designations, traditional for the
theory of oscillations [5]

A1=42
e NEXTT ) d =2,
2-m
C6+C7:k2 &:h
m ’ m

and assume by convention that

Ce* (Eéued. - gﬁ)

m

=C, = const,

then the differential equation of plunger movement 1
to the left can be given more compact form

ﬂ+2-n, vak?ox= h-sinﬂ+Cl.
dt T

Let’s determine dimensions of physical values 7,
k, h and C,. In accordance with the foregoing formula

.
nl_k' 7[4' ! ':u'dl’
k: C6+C7
m .
Then
1 1 -

=[] —=—. =1 —.MLT L=
[nmf] [k] [m] [/1] [dl] M
ML 1 ’
M-LT T
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M
- M]'MT_Z 121"
[/1]=[%0]]=M§1;2 -7,
[CG]'([ZGWO,]_[ 6]) MT_Z’(L_L)
[c]= ] 6l M :'
:%Z'L:L.Tz

Note that the values & and »; have the same dimen-
sions, which allows, if necessary, to compare these
values. Both values % and C|, as it must be, have iden-
tical dimensions.

In the theory of oscillations according to [5] physical
values n;, k and & have the following mechanical in-
tensions:

n; — the attenuation coefficient, which characterizes
the resistance of medium at low motion speed of the
point particle;

k — cyclic/circular (radian) frequency of eigenvibra-
tions (free oscillations) of the point particle on the
spring with stiffness coefficient c,., = c¢ + ¢7;

h — the largest value of the summand, which deter-
mines the maximum acceleration of the motion of the
point particle a,,,, = & + C; under investigation.

Let’s solve the equation (4) and construct accelera-
tion profile of the plunger to the left using the free
mathematical program “SMath Studio” taking into ac-
count the initial conditions:

o) =03
RO) = Pmin;
X) =0.

The constructed graph is shown in Fig. 4. The re-
ceived peak speed of the plunger, taking into account
given geometrical dimensions of mortar pump com-
ponent parts, proceeding from the diameter of the
working chamber section (plunger diameter) 25 mm at
the productivity of 0,25 m’/h is 8,63 m/s.

Vm/c
nr

1 I 1 | s

d 0251 o5t 0751 T

Figure 4 — The graph of plunger speed variation
in time when it moves to the left

The second cycle of pumping. Plunger movement
to the right. Now let us consider the motion of the
point particle to the right from its full distance left po-
sition, which is pictured in Figure 2, a, and in Fig. 2, b
and we will make a computational scheme of this mo-
tion, by choosing the system of coordinates Oxy from

the conditions similar to those of the point particle
motion on the left. When choosing such a frame of
reference, the initial conditions of motion will be:

xo=0 and x, =0,

and forces 13,7, 13,6 and ﬁo
(see Fig. 4, b)

In accordance with Hooke law, F,; =c¢;-Al, and
F

r

.affect the point particle

n

6 = C6 . A€6 N
From Figure 2, b it is obvious that

Al =x,

Aly =107, =17 :f7uea.—(§7+x):

= €7H€(). —g7—X
where x — the coordinate that determines the point
particle position at the time ¢, ¢,,,, — the length of

>

the undeformed spring 7, ¢, — the length of this
spring at the time ¢ and ¢; — the length of this spring
in the initial position of the point particle (at the time
t,=0).

Taking into account the set values A/, and Alg,
we will get

Fr7 =C7 '(€7ue()._g7 _x)’

F

r6 = Ce X
The module of the resistance force F,, of the mor-

tar mix to the point particle motion is again deter-
mined from the formula

F=k-v-u-S,

and from Fig. 3 it is clear that when the plunger 1
moves to the right, its area of pressure on the working
medium (solution) will be as follows

_zd;
T

S

Then in this case

2
Fo kv /7;4d2 ke yzdz N

or
Fon :k%ﬂ

'dz'v.
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From the computational scheme (see Fig. 2, b), we
can define, that in this case

2
ZEx:Fr7_Fr6_Fun’ (4)
i=1

or, taking into account the set force values,

2
> Fi :‘77'(€7He{>._§7_x)—06'x—k'%'ﬂ'dz"’:
i=1

:C7'(E7ueo.—§7)_C7’x_cé‘x_k’@'#'dz"’:

Jz
=G '(fnea —§7)—(C7 +C6)'X—k'7'ﬂ'dz V.
Substituting the last expression and the value

a =% into formula (4), we will obtain the differen-

X

tial equation of point particle motion in the form

d
m;‘; =C '(€7Hm_§7)_(‘77 +C6)'x_

7[ b
kX2 ud ey
> H-ady
and, dividing both parts of it into m and carrying out

legitimate transformations, we will get

ﬂ: C7 .(€7H€()A_g7)_ (C7 +06).
dt m m
_k.ﬁ.ﬂ-dz.v
2-m
and
ﬂ+k.£.#.d2.v+c‘7——i_c‘6.x:
dt 2-m (5)
_ & '(€7ue0. _g7)
m

The deduced equation (5) is the differential equa-
tion of plunger movement 1 to the right in the canoni-
cal form or the mathematical model of this mechanical
motion.

Again, if we introduce the designations, traditional
for the theory of oscillations, we will get:

N

X d, =20,
2-m

Cy +C6 :k2
m

and assume by convention that

Cq- (Z Tneo. 7 )
m

then the above-obtained differential equation of

plunger movement 1 to the right can be given the fol-

lowing form

%+2~nw~v+k2 x=C,,

in which the dimensions of physical values n,, k and

C, as well as their mechanical intensions, are un-

doubtedly similar to the foregoing.

=C, =const ,

Let’s solve the equation (2) and construct accelera-
tion profile of the plunger to the right at the same axis
of reference with acceleration profile of the plunger to
the left using the free mathematical program “SMath
Studio” taking into account the initial conditions:

Yoy =0
F(O) = Pmin; P
X(0) =0.

The constructed graph is shown in Fig. 5 and dis-
plays the graph of temporal variations for the plunger
speed in the complete cycle. The received peak speed
of the plunger movement to the right, taking into ac-
count given geometrical dimensions of mortar pump
component parts, proceeding from the diameter of the
working chamber section (plunger diameter) 25 mm at
the productivity of 0,25 m’/h is 9,33 m/s.

Of—+—F——+——F——+—F+—+—+—>

0.251 05m 0.75mw

-0+

Figure 5 — The graph of temporal variations
for the plunger speed in the complete cycle
of plunger movement

Conclusions

1. We have obtained mathematical models of dif-
ferential equations, which reflect velocity history
(variations in time of the velocity) of a differential
pump piston of a mortar pump used for pumping of
construction mixes in the complete cycle of its move-
ment.

2. The analysis of the obtained mathematical mod-
els allows to optimize the geometric dimensions of
mortar pump component parts, including the geomet-
ric dimensions of the springs in order to ensure the
mechanical energy conservation during pumping.

3. The graph of temporal variations for the plunger
speed in the complete cycle of plunger movement al-
lows us to simulate the required plunger productivity
when pumping mortar mixes.
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