PRINCIPLES OF DEVELOPMENT OF ELECTROMAGNETIC SCREENS WITH SMALL DIMENSIONS AND WEIGHT

Authors

  • Kyrylo Nikolaiev
  • Artem Bilyk
  • Kostiantyn Sapozhnykov

DOI:

https://doi.org/10.26906/SUNZ.2025.4.167

Keywords:

electromagnetic radiation, electromagnetic screen, reflection coefficient

Abstract

The possibilities of developing thin-film materials for shielding ultra-high and higher frequency electromagnetic radiation are analysed. It is shown that coatings with a thickness less than a quarter of the wavelength of the incident electromagnetic wave (400–500 μm) do not provide low reflection coefficients when applied to a metal surface. The reduction of reflection coefficients to 0.7–0.6 occurs randomly at different frequencies. This is due to resonance phenomena in the coating. The frequency band of minimum reflection is narrow and has no practical significance. It has been shown that it is difficult to achieve an acceptable balance of magnetic and electrophysical properties of a thin coating to minimise reflection coefficients. This is due to the dependence of the final product's performance not only on the magnetic and dielectric properties of the components and their concentrations, but also on the morphology of the particles, their distribution in the matrix body, and the polymerisation mode. In addition, magnetic and electrophysical properties have an amplitude-frequency dependence. It has been proven that in order to ensure low electromagnetic wave reflection coefficients and high electromagnetic energy absorption, it is advisable to use a multilayer structure. The layers must have different magnetic and electrophysical properties. At the same time, the lowest filler concentrations are in the upper layer. These concentrations should be at the limit of the percolation effect – a sharp increase in the electrical conductivity of the composition. These concentrations can be estimated using the theory of electrodynamics of continuous media. If possible, it is advisable to provide a dielectric layer between the layers. The presence of boundaries increases the overall effectiveness of the protective coating.

Downloads

Download data is not yet available.

References

1. Панова О.В., Тихенко О.М., Ніколаєв К.Д., Ходаковський О.В., Сапельнікова О.Ю. Дослідження захисних властивостей металевих електромагнітних екранів та визначення умов їх максимальної ефективності. Системи управління, навігації та зв’язку. 2019. Вип. 5(57). С. 103−107.

2. Глива В.А., Панова О.В., Тихенко О.М., Левченко Л.О., Колумбет В.П. Дослідження амплітудно-частотних залежностей захисних властивостей магнітних екранів на основі аморфних сплавів. Системи управління, навігації та зв’язку. 2019. Вип. 6(58). С. 102−107.

3. Glyva V., Levchenko L., Panova O., Tykhenko O., Radomska M. The composite facing material for electromagnetic felds shielding. Innovative Technology in Architecture and Design (ITAD 2020): IOP Conference Series: Materials Science and Engineering. 2020. Vol. 907. URL: https://iopscience.iop.org/article/ 10.1088/1757-899X/907/1/012043/meta

4. Tudose I.V., Mouratis K., Ionescu O.N., Romanitan C., Pachiu C., Popescu M., Khomenko V., Butenko O., Chernysh O., Kenanakis G., Barsukov V.Z., Suchea M.P., Koudoumas E. Novel Water-Based Paints for Composite Materials Used in Electromagnetic Shielding Applications. Nanomaterials. 2022, 12(3). Р. 487. https://doi.org/10.3390/nano12030487

5. Alina Ruxandra Caramitu, Ioana Ion, Adriana Mariana Bors, Violeta Tsakiris, Jana Pintea, Ana-Maria Daniela Caramitu. Preparation and Spectroscopic Characterization of Some Hybrid Composites with Electromagnetic Shielding Properties Exposed to Different Degradation Factors. MATERIALE PLASTICE. 2023. 59. 82-94 https://doi.org/10.37358/MP.22.4.5627

6. Glyva, V., Bakharev, V., Kasatkina, N., Levchenko, O., Levchenko, L., Burdeina, N., Guzii, S., Panova, O., Tykhenko, O., Biruk, Y. Design of liquid composite materials for shielding electromagnetic fields. Eastern-European Journal of Enterprise Technologies, 2021, 3(6-111), рр. 25–31. https://doi.org/10.15587/1729-4061.2021.231479

7. Senyk I., Kuryptia Y., Barsukov V., Butenko O., Khomenko V. Development and application of thin wide-band screening composite materials. Physics and Chemistry of Solid State. 2020. 21(4). Pp. 771–778

8. Butenko O., Boychuk V., Savchenko B., Kotsyubynsky V., Khomenko V., Barsukov V. Pure ultrafine magnetite from carbon steel wastes. Materials Today: Proceedings. 2019. V. 6, pp. 270–278

9. Бурдейна Н.Б., Бірук Я.І., Ніколаєв К.Д. (2023). Розроблення матеріалів багатошарової структури градієнтного типу на основі рідких композицій для екранування електромагнітних полів. Екологічна безпека та природокористування. 45 (1). С. 68–75. https://doi.org/10.32347/2411-4049.2023.1.68-75.

10. G. Krasnianskyi, V. Glyva, N. Burdeina, Y. Biruk, L. Levchenko, O. Tykhenko. 2024. Methodology For Designing Facing Building Materials with Electromagnetic Radiation Shielding Functions. INTERNATIONAL JOURNAL OF CONSERVATION SCIENCE. Volume 15, Special Issue 1, 2024: 53-62. DOI: 10.36868/IJCS.2024.SI.05

Published

2025-12-02