BLOCK CIPHER MODE BASED ON HUFFMAN CODING FOR NIBBLES

Authors

  • Maksym Glavchev
  • Yuliia Hlavcheva
  • Heorhii Molchanov

DOI:

https://doi.org/10.26906/SUNZ.2025.4.045

Keywords:

block cipher, Huffman coding, data compression, cryptography, symmetric algorithms

Abstract

Relevance. The relevance of this work is driven by the need for cryptographic solutions that combine high security, efficient compression, and low computational overhead, which is particularly important for IoT, mobile, and embedded systems. The purpose of the article is to research the development and analysis of a block cipher mode based on Huffman coding for nibbles, with integrated hash protection mechanisms and support for both global and per-block processing. Object of research: the use of Huffman transformation of half-bytes (nibbles) to create a block cipher mode. Research results. Experiments have shown that for data with low nibble entropy (H < 3.5 bits/nibble), the proposed mode reduces the size of encrypted data by 10– 20% without significant performance loss, ensuring error resistance and integrity preservation. Conclusion: the integration of statistical coding and symmetric encryption with adaptive parameter selection provides a balanced solution for secure and efficient information transmission under resource constraints.

Downloads

Download data is not yet available.

References

1. Huffman D. A method for the Construction of Minimum Redundancy Codes Proceedings of the IRE 40. 1952. DOI: https://doi.org/10.1109/JRPROC.1952.273898.

2. Hameed, M. E., Ibrahim, M. M., Manap, N. A., & Mohammed, A. A. (2020). A lossless compression and encryption mechanism for remote monitoring of ECG data using Huffman coding and CBC-AES. Future Generation Computer Systems, 111, 829– 840. DOI: https://doi.org/10.1016/j.future.2019.10.010.

3. Singh, S., Sharma, P.K., Moon, S.Y. et al. (2024). Advanced lightweight encryption algorithms for IoT devices: survey, challenges and solutions. J Ambient Intell Human Comput 15, 1625–1642. DOI: https://doi.org/10.1007/s12652-017-0494-4.

4. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., & Uhsadel, L. (2007). A Survey of Lightweight-Cryptography Implementations. IEEE Design & Test of Computers, 24(6), 522–533. DOI: https://doi.org/10.1109/MDT.2007.178.

5. Salomon, D. & Motta, G. (2010). Handbook of Data Compression. Springer. DOI: https://doi.org/10.1007/978-1-84882-903-9.

6. Bertoni, G., Daemen, J., Peeters, M., & Van Assche, G. (2011). The Keccak Reference. NIST SHA-3 URL: https://keccak.team/keccak.html.

7. Leveni, F., Magri, L., Alippi, C., Boracchi, G. (2023). Hashing for Structure-Based Anomaly Detection. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-43153-1_3.

8. Zhu B. B. Multimedia Encryption. Multimedia Security Technologies for Digital Rights Management. 2006. P. 75–109. DOI: https://doi.org/10.1016/b978-012369476-8/50006-3.

9. Bogdanov, A. et al. (2007). PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds) Cryptographic Hardware and Embedded Systems - CHES 2007. CHES 2007. Lecture Notes in Computer Science, vol 4727. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-540-74735-2_31.

10. Alfalou, A., & Brosseau, C. (2009). Optical Image Compression and Encryption Methods. Advances in Optics and Photonics, 1(3), 589–636. DOI: https://doi.org/10.1364/AOP.1.000589.

11. Баленко О. І., Главчев М. І., Трубкін О. В. Програмний модуль на основі модифікованого криптографічного алгоритму сімейства AES. Інформатика, управління та штучний інтелект : тези 10-ї міжнар. наук.-техн. конф., Харків – Краматорськ – Тернопіль, 10-12 травня 2023 р. Харків : Impress, 2023. С. 8. URL: https://repository.kpi.kharkov.ua/handle/KhPIPress/65046.

Published

2025-12-02