RESEARCH OF FLIGHT PLANNING METHODS OF UNMANNED AERIAL VEHICLES IN COMPLEX FLIGHT CONDITIONS FOR MONITORING THE STATE OF CRITICAL INFRASTRUCTURE ELEMENTS

Authors

  • Ruslan Kulish

DOI:

https://doi.org/10.26906/SUNZ.2025.4.012

Keywords:

unmanned aerial vehicle, routing, monitoring, critical infrastructure objects, route planning

Abstract

Relevance. The vast majority of modern UAV flight path planning algorithms designed for real-time onboard application do not take into account UAV dynamics, which negatively affects the accuracy and optimality of route planning, especially when tracking moving objects. Object of research: processes of monitoring critical infrastructure elements with UAVs. Purpose of the article. evaluation of methods for flight planners of unmanned aerial vehicles in difficult flight conditions for monitoring the condition of critical infrastructure elements. Research results. The article presents a comparative analysis of existing methods for constructing a UAV flight route during the observation of objects - elements of critical infrastructure objects, namely the exhaustive search method and the greedy algorithm with the improved algorithm proposed by the author. When modeling the emulation of the UAV flight using the MATLAB package, twenty scenarios were developed. For each scenario, a list of five objects to be monitored was selected. The objects were selected as dynamic and stationary. Based on the analysis of the considered scenarios, conclusions were formulated about the effectiveness of the improved method. Conclusions. The routes constructed using the improved method completely coincided with the routes constructed using the exhaustive search method. At the same time, the calculation time is significantly lower than the existing methods, which allows using the improved algorithm as part of the on-board software complex and quickly constructing and changing the route depending on the situation with respect to the monitored objects. Using an identifier in the control system circuit to compensate for the influence of the wind allows reducing the flight time along the route by 15%.

Downloads

Download data is not yet available.

References

1. Галінський Д.О., Куліш Р.В. Метод моніторингу стану стаціонарних елементів об’єктів критичної інфраструктури безпілотними літальними апаратами з використанням динамічного програмування. Системи управління, навігації та зв’язку. Полтава, 2023. Вип. 1(71). С. 10-15. https://doi.org/10.26906/SUNZ.2023.1.010

2. Kulish R. Модель маршрутизації обльоту мобільних об'єктів безпілотним літальним апаратом / R. Kulish, O. Matiushrnko // Системи управління, навігації та зв’язку. Полтава: ПНТУ, 2023. Т. 2(72). С. 20-25. https://doi.org/10.26906/SUNZ.2023.2.020

3. Latombe, J. C. 1991. Robot Motion Planning. Kluwer Academic. https://doi.org/10.1007/978-1-4615-4022-9

4. Ait Saadi, A.; Soukane, A.; Meraihi, Y.; Benmessaoud Gabis, A.; Mirjalili, S.; Ramdane-Cherif, A. UAV path planning using optimization approaches: A survey. Arch. Comput. Methods Eng. 2022, 29, 4233–4284. https://doi.org/10.1007/s11831-022-09742-7

5. Bal, M. An overview of path planning technologies for unmanned aerial vehicles. Therm. Sci. 2022, 26, 2865–2876. Електронний ресурс. Режим доступу https://doi.org/10.2298/TSCI2204865B

6. Wu, Y. A survey on population-based meta-heuristic algorithms for motion planning of aircraft. Swarm Evol. Comput. 2021, 62, 100844. Електронний ресурс. Режим доступу https://doi.org/10.1016/j.swevo.2021.100844

7. Majeed, A.; Hwang, S.O. A multi-objective coverage path planning algorithm for UAVs to cover spatially distributed regions in urban environments. Aerospace 2021, 8, 343. https://doi.org/10.3390/aerospace8110343

8. Saeed, R.A.; Omri, M.; Abdel-Khalek, S.; Ali, E.S.; Alotaibi, M.F. Optimal path planning for drones based on swarm intelligence algorithm. Neural Comput. Appl. 2022, 34, 10133–10155. https://doi.org/10.1007/s00521-022-06998-9

9. Xu, C.; Duan, H.; Liu, F. Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning. Aerosp. Sci. Technol. 2010, 14, 535–541. https://doi.org/10.1016/j.ast.2010.04.008

10. Zhang, Y.; Wu, L.; Wang, S. UCAV path planning based on FSCABC. Inf.-Int. Interdiscip. J. 2011, 14, 687–692. Електронний ресурс. Режим доступу https://www.academia.edu/7461343/UCAV_path_planning_based_on_FSCABC

11. Zhang, Y.; Wu, L.; Wang, S. UCAV path planning by fitness-scaling adaptive chaotic particle swarm optimization. Math. Probl. Eng. 2013, 2013. Електронний ресурс. Режим доступу http://dx.doi.org/10.1155/2013/705238

12. Wang, G.G.; Guo, L.; Duan, H.; Liu, L.; Wang, H. A modified firefly algorithm for UCAV path planning. Int. J. Hybrid Inf. Technol. 2012, 5, 123–144. https://www.researchgate.net/publication/266884589_A_Modified_Firefly_Algorithm_for_UCAV_Path_Planning

13. Wang, G.G.; Guo, L.; Duan, H.; Wang, H.; Liu, L.; Shao, M. A hybrid metaheuristic DE/CS algorithm for UCAV threedimension path planning. Sci. World J. 2012, 2012, 583973. https://doi.org/ 10.1100/2012/583973

14. Timochko, A; Fustii, V; Kolesnyk, A; Olizarenko, S; Kalashnyk, G; Kulish, R; Tymoschuk, O, Galinskyi, D; Inter-Object Navigation of Unmanned Aerial Vehicles to Increase the Efficiency and Accuracy of Inspection of Power Lines, Problemele Energeticii Regionale Nr. 1(57) / 2023 / ISSN 1857-0070. https://doi.org/10.52254/1857-0070.2023.1-57.03

Published

2025-12-02

Issue

Section

Road, river, sea and air transport