SYSTEMATIC ANALYSIS OF THE CAUSES OF NAVIGATIONAL INCIDENTS DURING SHIP MOORING AND WAYS TO IMPROVE THE INTERNATIONAL REGULATORY FRAMEWORK
DOI:
https://doi.org/10.26906/SUNZ.2025.4.005Keywords:
maritime transport, mooring of ships, ship control, maneuvering, incidents, navigation safety, international conventions, human factor, port infrastructure, risk management, bridge resource management (BRM)Abstract
Relevance. Due to the increasing size of merchant ships and the load on port infrastructure, the issue of ensuring safety during the mooring process is becoming strategically important. Frequent incidents in ports around the world indicate the imperfection of existing practices and the fragmentation of the implementation of modern risk management methods, in particular Bridge Resource Management (BRM). The object of study is navigation incidents during mooring of large-tonnage vessels. Purpose - to systematically analyze the factors that cause mooring incidents and to formulate recommendations for improving the international regulatory framework and risk management procedures in ports. Methodology. The study uses comparative analysis of incidents, expert risk assessment, classification of causes based on a factor model, and analysis of international IMO regulations (SOLAS, STCW, MSC.255(84), etc.). Results. The study confirmed that the key causes are excessive approach speed, inconsistency of towing support actions, human factor, and lack of standardized BRM procedures on the approach to the berth. Comparison of practices in different countries has shown uneven implementation of simulator training and intelligent decision support systems. Conclusions. The paper provides recommendations for the harmonization of regional practices that promote the development of decision support systems and the introduction of simulator training for ship crews. The expediency of integrating BRM in the port and developing adaptive risk management protocols, taking into account the real state of infrastructure provision, is proved.Downloads
References
1. Othman, M. K., Mohd Sabri, N. S. A., Abdul Rahman, N. S. F., & Osnin, N. A. (2025). Port operators’ perceptions and acceptance of maritime autonomous surface ships (MASS) operations: Insights from Malaysia. Case Studies on Transport Policy, 22, 101567. https://doi.org/10.1016/j.cstp.2025.101567
2. Xin, X., Liu, K., Yu, Y., & Yang, Z. (2025). Developing robust traffic navigation scenarios for autonomous ship testing: An integrated approach to scenario extraction, characterization, and sampling in complex waters. Transportation Research Part C: Emerging Technologies, 178, 105246. https://doi.org/10.1016/j.trc.2025.105246
3. Khan, R. U., Yin, J., Mustafa, F. S., & Shi, W. (2023). Factor assessment of hazardous cargo ship berthing accidents using an ordered logit regression model. Ocean Engineering, 284, 115211. https://doi.org/10.1016/j.oceaneng.2023.115211
4. Yang, L., Yang, J., Fan, A., Zhou, R., & Wang, L. (2025). Fire risk assessment of electric ships on inland waterway based on GT-FFTA: A case study of China. Ocean Engineering, 332, 121329. https://doi.org/10.1016/j.oceaneng.2025.121329
5. Cao, Y., Wang, X., Yang, Z., Wang, J., Wang, H., & Liu, Z. (2023). Research in marine accidents: A bibliometric analysis, systematic review and future directions. Ocean Engineering, 284, 115048. https://doi.org/10.1016/j.oceaneng.2023.115048
6. Adhita, I. G. M. S., Fuchi, M., Konishi, T., & Fujimoto, S. (2023). Ship navigation from a Safety-II perspective: A case study of training-ship operation in coastal area. Reliability Engineering & System Safety, 234, 109140. https://doi.org/10.1016/j.ress.2023.109140
7. Wang, Y., Li, P., Hong, C., & Yang, Z. (2025). Causation analysis of ship collisions using a TM-FRAM model. Reliability Engineering & System Safety, 260, 111035. https://doi.org/10.1016/j.ress.2025.111035
8. Liu, Z., Deng, J., Shu, Y., Gan, L., Song, L., Li, H., & Yang, Z. (2025). Spatiotemporal prediction of offshore wind fields based on a hybrid deep learning model for maritime navigation. Ocean & Coastal Management, 269, 107841. https://doi.org/10.1016/j.ocecoaman.2025.107841
9. Liu, J., Yang, F., Li, S., Lv, Y., & Hu, X. (2024). Testing and evaluation for intelligent navigation of ships: Current status, possible solutions, and challenges. Ocean Engineering, 295, 116969. https://doi.org/10.1016/j.oceaneng.2024.116969
10. Cao, W., Wang, X., Li, J., Zhang, Z., Cao, Y., & Feng, Y. (2024). A novel integrated method for heterogeneity analysis of marine accidents involving different ship types. Ocean Engineering, 312, 119295. https://doi.org/10.1016/j.oceaneng.2024.119295
11. Мельник, О. М., & Бичковський, Ю. В. (2021). Сучасна методика оцінки рівню безпеки судна та шляхи його підвищення. Розвиток транспорту, (2[9]), 37-46. https://doi.org/10.33082/td.2021.2-9.03 [in Ukrainian]
12. Мельник, О. М., & Бичковський, Ю. В. (2021). Врахування фактору стресу у системі забезпечення безпеки мореплавства. Вчені записки ТНУ ім. В. І. Вернадського. Технічні науки, 32(71)(4), 260-264. https://doi.org/10.32838/2663-5941/2021.4/39 [in Ukrainian]
13. Бичковський Ю.В., Мельник О.М. (2022). Роль та місце людського елементу у ситуації навалу або зіткнення судна з причалом. Вчені записки ТНУ ім. Вернадського. Технічні науки 33(72) № 1 - C. 270 - 276. https://doi.org/10.32838/2663-5941/2022.1/41
14. Melnyk, O., Bychkovsky, Y., Voloshyn, A. (2022) Maritime situational awareness аs a key measure for safe ship operation. Scientific Journal of Silesian University of Technology. Series Transport. 114, 91-101. ISSN: 0209-3324. https://doi.org/10.20858/sjsutst.2022.114.8
15. Melnyk, O., Bychkovsky, Y., Onishchenko, O., Onyshchenko, S., Volianska, Y. (2023). Development the Method of Shipboard Operations Risk Assessment Quality Evaluation Based on Experts Review. Studies in Systems, Decision and Control, vol 481, 695-710. Springer, Cham. https://doi.org/10.1007/978-3-031-35088-7_40
16. Onyshchenko S., Bychkovsky Y., Melnyk O., Onishchenko O., Jurkovič M., Rubskyi V., Liashenko K. (2024). A model for assessing shipping safety within project-orientated risk management based on human element. Scientific Journal of Silesian University of Technology. Series Transport, 123, pp. 319 - 334. DOI: 10.20858/sjsutst.2024.123.16
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sergiy Voliansky, Yuriy Buchkovsky, Oleksiy Melnyk, Andriy Voloshyn

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.