METHODS AND ALGORITHMS FOR VIRTUAL MACHINE MIGRATION

Authors

  • Serhii Pyrozhenko
  • Viacheslav Radchenko

DOI:

https://doi.org/10.26906/SUNZ.2025.3.167

Keywords:

cold migration, virtual machine, host, data storage, cloud environment, dynamic migration

Abstract

The article discusses various aspects of virtual machine migration. The process of moving them between different hosts, data storages, or even between cloud environments. It can be performed in two modes: cold migration, when the virtual machine is previously turned off, and live (dynamic) migration, which occurs without stopping its operation. Thanks to live migration, it is possible to transfer active virtual machines, for example, between servers within a cluster, without interrupting the provision of services. To organize such a process, special administration tools are used, in particular Hyper-V Manager or System Center Virtual Machine Manager from Microsoft Learn.

Downloads

Download data is not yet available.

References

1. Silva, D., Rafael, J. & Fonte, A., 2023. Virtualization Maturity in Creating System VM: An Updated Performance Evaluation. International Journal of Electrical and Computer Engineering Research, 3(2), pp. 7–17. https://doi.org/10.53375/ijecer.2023.341 DOI: https://doi.org/10.53375/ijecer.2023.341

2. Zhang, S., Wang, Y., Wan, X., Li, Z. & Guo, Y., 2023. Virtualization Airborne Trusted General Computing Technology. Applied Sciences, 13(3), 1342. https://doi.org/10.3390/app13031342 DOI: https://doi.org/10.3390/app13031342

3. Altahat, M.A., Daradkeh, T. & Agarwal, A., 2025. Virtual machine scheduling and migration management across multicloud data centers: blockchain-based versus centralized frameworks. Journal of Cloud Computing, 14, Article number: 1. https://doi.org/10.1186/s13677-024-00724-7 DOI: https://doi.org/10.1186/s13677-024-00724-7

4. Kuchuk, N., Mozhaiev, O., Semenov, S., Haichenko, A., Kuchuk, H., Tiulieniev, S., Mozhaiev, M., Brusakova, O. and Gnusov, Y. (2023), “Devising a method for balancing the load on a territorially distributed foggy environment”, EasternEuropean Journal of Enterprise Technologies, 1(4 (121), pp. 48–55. doi: https://doi.org/10.15587/1729-4061.2023.274177. DOI: https://doi.org/10.15587/1729-4061.2023.274177

5. Chen, J., Wang, Y. and Liu, T. (2021), “A proactive resource allocation method based on adaptive prediction of resource requests in cloud computing”, J. Wireless Com Network, 24, doi: https://doi.org/10.1186/s13638-021-01912-8. DOI: https://doi.org/10.1186/s13638-021-01912-8

6. Petrovska, I. and Kuchuk, H. (2022), “Static allocation method in a cloud environment with a service model IAAS”, Advanced Information Systems, vol. 6, is. 3, pp. 99–106, doi: https://doi.org/10.20998/2522-9052.2022.3.13. DOI: https://doi.org/10.20998/2522-9052.2022.3.13

7. Kuchuk, N., Shefer, O., Cherneva, G. and Alnaeri, F.A. (2021), “Determining the capacity of the self-healing network segment”, Advanced Information Systems, vol. 5, no. 2, pp. 114–119, Jun. 2021, doi: https://doi.org/10.20998/2522-9052.2021.2.16. DOI: https://doi.org/10.20998/2522-9052.2021.2.16

8. Petrovska, I. and Kuchuk H. (2022), “Features of the distribution of computing resources in cloud systems”, Control, Navigation and Communication Systems, No. 2, pp. 75-78, doi: http://dx.doi.org/10.26906/SUNZ.2022.2.075. DOI: https://doi.org/10.26906/SUNZ.2022.2.075

9. Kuchuk, G., Kovalenko, A., Komari, I.E., Svyrydov, A. and Kharchenko, V. (2019), “Improving big data centers energy efficiency: Traffic based model and method”, Studies in Systems, Decision and Control, vol. 171, Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (Eds.), Springer Nature Switzerland AG, pp. 161-183, doi: https://doi.org/10.1007/978-3-030-00253-4_8. DOI: https://doi.org/10.1007/978-3-030-00253-4_8

10. Nechausov, A., Mamusuĉ, I. and Kuchuk, N. (2017), “Synthesis of the air pollution level control system on the basis of hyperconvergent infrastructures”, Advanced Information Systems, vol. 1, no. 2, pp. 21–26, doi: https://doi.org/10.20998/2522-9052.2017.2.04. DOI: https://doi.org/10.20998/2522-9052.2017.2.04

11. Tan, B., Ma, H. and Mei, Y. (2017), “A NSGA-II-based approach for service resource allocation in cloud”, IEEE Congress on Evolutionary Computation (CEC), 17013723, pp. 2574–2581, doi: https://doi.org/10.1109/CEC.2017.7969618. DOI: https://doi.org/10.1109/CEC.2017.7969618

12. Wang, J., Bewong, M. & Zheng, L. (2024), “SD-WAN: Hybrid Edge Cloud Network between Multi-site SDDC”, Computer Networks, 250, Article number 110509, doi: https://doi.org/10.1016/j.comnet.2024.110509 DOI: https://doi.org/10.1016/j.comnet.2024.110509

Downloads

Published

2025-09-30