MULTI-CRITERIA EVALUATION OF SHIP MODERNIZATION STRATEGIES FOR CO2 EMISSION REDUCTION BASED ON THE TOPSIS METHOD
DOI:
https://doi.org/10.26906/SUNZ.2025.3.005Keywords:
maritime transport, ship modernization, CO₂ emissions, slow steaming strategy, multicriteria assessment, energy efficiency, environmental protection, sustainable development, environmental safety, project managementAbstract
Relevance. In the context of implementing a decarbonization strategy for maritime transport, the task of selecting the optimal ship modernization strategy becomes particularly relevant. Such a strategy must reduce CO₂ emissions while maintaining economic viability and technical feasibility. Given the diversity of available alternatives—differing in cost, payback period, environmental impact, and risk—a comprehensive decision-making method is required. Object of research: a multicriteria model for evaluating ship modernization strategies. Purpose: to apply the TOPSIS method to determine the most effective ship modernization alternative, taking into account economic, environmental, and engineering factors. Results. The study analyzes five ship modernization strategies. An integrated efficiency indicator was calculated using five evaluation criteria. The analysis results show that the slow steaming strategy presents the most balanced profile. Conclusions. The TOPSIS model proved effective for ranking modernization alternatives based on multiple criteria and can be used to support informed decision-making in sustainable maritime transport project management.Downloads
References
1. Tamilvanan, A., Mohanraj, T., Ashok, B., & Santhoshkumar, A. (2023). Enhancement of energy conversion and emission reduction of Calophyllum inophyllum biodiesel in diesel engine using reactivity controlled compression ignition strategy and TOPSIS optimization. Energy, 264, 126168. https://doi.org/10.1016/j.energy.2022.126168 DOI: https://doi.org/10.1016/j.energy.2022.126168
2. Kirankumar, K., Kumar, G., Kamath, N., & Gangadharan, K. (2024). Experimental investigation and optimization of performance, emission, and vibro-acoustic parameters of SI engine fueled with n-propanol and gasoline blends using ANN-GA coupled with NSGA3-modified TOPSIS hybrid approach. Energy, 306, 132521. https://doi.org/10.1016/j.energy.2024.132521 DOI: https://doi.org/10.1016/j.energy.2024.132521
3. Bhumula, K. B., & Kumar, G. N. (2024). Using CRITIC-TOPSIS and python to examine the effect of 1-Hepatnol on the performance and emission characteristics of CRDI CI engine with split injection. Heliyon, 10(11), e31484. https://doi.org/10.1016/j.heliyon.2024.e31484 DOI: https://doi.org/10.1016/j.heliyon.2024.e31484
4. Das, S., Tamang, S. K., & Kalita, P. (2025). An integrated ANFIS-TOPSIS approach for enhanced performance and emissions characteristics in syngas-diesel powered dual-fuel engine. International Journal of Hydrogen Energy, 139, 1116-1132. https://doi.org/10.1016/j.ijhydene.2025.01.414 DOI: https://doi.org/10.1016/j.ijhydene.2025.01.414
5. Han, Y., Ji, W., Liu, L., Cao, L., Ping, W., & Fan, J. (2025). Impact of the National Economy and Air Pollutant Emissions on Chinese Energy Mix: Evidence from an SBMDEA-TOPSIS Model. Energy, 136098. https://doi.org/10.1016/j.energy.2025.136098 DOI: https://doi.org/10.1016/j.energy.2025.136098
6. Bathala, R., G, H., Rajkumar, S., S, D. A., & Jeyaseelan, T. (2024). Experimental investigation, ANN modeling, and TOPSIS optimization of gasoline-alcohol blends for minimizing tailpipe emissions of a motorcycle. Energy, 293, 130698. https://doi.org/10.1016/j.energy.2024.130698 DOI: https://doi.org/10.1016/j.energy.2024.130698
7. Negarestani, M. N., Hajikandi, H., Fatehi-Nobarian, B., & Majrouhi Sardroud, J. (2024). Introducing green structure based on the pattern of TOPSIS method by grey wolf algorithm. Proceedings of the Institution of Civil Engineers – Engineering Sustainability. https://doi.org/10.1680/jensu.23.00096 DOI: https://doi.org/10.1680/jensu.23.00096
8. Iqbal, M., Fan, Y., Ahmad, N., & Ullah, I. (2025). Circular economy solutions for net-zero carbon in China's construction sector: A strategic evaluation. Journal of Cleaner Production, 504, 145398. https://doi.org/10.1016/j.jclepro.2025.145398
9. Hu, M., Fan, B., Wang, H., Qu, B., & Zhu, S. (2016). Constructing the ecological sanitation: A review on technology and methods. Journal of Cleaner Production, 125, 1–21. https://doi.org/10.1016/j.jclepro.2016.03.012 DOI: https://doi.org/10.1016/j.jclepro.2016.03.012
10. Hoang, A. T., Pham, V. V., & Nguyen, X. P. (2021). Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of Cleaner Production, 305, 127161. https://doi.org/10.1016/j.jclepro.2021.127161 DOI: https://doi.org/10.1016/j.jclepro.2021.127161
11. Shuai, J., Xiong, X., Huang, C., Zhao, Y., Chen, X., & Shuai, C. (2025). What is the impact of EU's carbon border adjustment mechanism on the economy and emissions reduction of its electric power trading partners? Journal of Cleaner Production, 145517. https://doi.org/10.1016/j.jclepro.2025.145517 DOI: https://doi.org/10.1016/j.jclepro.2025.145517
12. Huang, X., Wen, Y., Zhang, F., Han, H., Huang, Y., & Sui, Z. (2023). A review on risk assessment methods for maritime transport. Ocean Engineering, 279, 114577. https://doi.org/10.1016/j.oceaneng.2023.114577 DOI: https://doi.org/10.1016/j.oceaneng.2023.114577
13. Ali, Y., Saad, T. B., & Rehman, O. U. (2019). Integration of IoT technologies in construction supply chain networks; CPEC a case in point. Sustainable Operations and Computers, 1, 28–34. https://doi.org/10.1016/j.susoc.2020.12.003 DOI: https://doi.org/10.1016/j.susoc.2020.12.003
14. Mohammed, A., Naghshineh, B., Spiegler, V., & Carvalho, H. (2021). Conceptualising a supply and demand resilience methodology: A hybrid DEMATEL-TOPSIS-possibilistic multi-objective optimization approach. Computers & Industrial Engineering, 160, 107589. https://doi.org/10.1016/j.cie.2021.107589 DOI: https://doi.org/10.1016/j.cie.2021.107589
15. Iqbal, M., Fan, Y., Ahmad, N., & Ullah, I. (2025). Circular economy solutions for net-zero carbon in China's construction sector: A strategic evaluation. Journal of Cleaner Production, 504, 145398. https://doi.org/10.1016/j.jclepro.2025.145398 DOI: https://doi.org/10.1016/j.jclepro.2025.145398
16. Мельник О. М., Волошин А. О., Онищенко О. А., Щербина О. В., Васалатій Н. В., Никитюк П. В. Організація забезпечення інформаційної безпеки морського судна. // Збірник наукових праць Українського державного університету залізничного транспорту. 2022. № 201. С. 69–78. DOI: https://doi.org/10.18664/1994-7852.201.2022.267758 DOI: https://doi.org/10.18664/1994-7852.201.2022.267758
17. Melnyk O., Shcherbina O., Mykhailova I., Obnyavko T., Korobko T. Focused research on technological innovations in shipping industry: review and prospects. // Transport Development. 2023. № 1(16). С. 164–174. DOI: https://doi.org/10.33082/td.2023.1-16.13 DOI: https://doi.org/10.33082/td.2023.1-16.13
18. Мельник О. М., Шумило О. М., Онищенко О. А., Михайлова Ю. В., Обнявко Т. С., Коробко Т. О. Концепція та перспективи використання водневого палива на морському транспорті. // Збірник наукових праць Українського державного університету залізничного транспорту. 2023. № 203. С. 96–105.
19. Мельник О. М. Оцінка впливу енергоефективності на безпеку експлуатації судна. // Подільський вісник: сільське господарство, техніка, економіка. 2023. № 2(39). С. 76–81. DOI: https://doi.org/10.37406/2706-9052-2023-2.11 DOI: https://doi.org/10.37406/2706-9052-2023-2.11
20. Мельник О. М. Актуальні проблеми безпеки морського транспорту: тенденції, ризики та стратегії врегулювання. // Водний транспорт. 2023. № 1(37). С. 116–126. DOI: https://doi.org/10.33298/2226-8553.2023.1.37.13 DOI: https://doi.org/10.33298/2226-8553.2023.1.37.13
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mykola Bulgakov, Oleh Lohinov, Oleksii Melnyk

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.