Designing clothing for protection against thermal effects and heat retention

Authors

  • V. Glyva Kyiv National University of Construction and Architecture
  • M. Dovhanovskyi Kyiv National University of Construction and Architecture

DOI:

https://doi.org/10.26906/SUNZ.2025.1.169-171

Keywords:

thermal insulation, protective clothing, modelling, glass fibre

Abstract

A model of heat transfer through several layers of textile and protective material is developed based
on the fundamental relations of thermal conductivity. The presence of air gaps between individual layers of materials is taken into
account. The temperature changes of individual material layers were obtained, which allows us to determine the range of textile
materials and protective layers depending on the thermal insulation tasks. The developed methodology makes it possible to design
clothing to protect people from external thermal influences and prevent negative changes in the thermal regime of the human body.
Dependencies on the temperature change of the outer surface of the protective material over time were obtained. This makes it
possible to determine the time intervals during which protective clothing performs its functions at the required level. The research
results were verified. A real fibreglass-based material was examined using a standard thermal imager in real-world conditions. It
is shown that at least at a temperature gradient of 20 K, the material completely isolates a person from the influence of the external
environment. It is noted that glass fibre particles are harmful to humans, so in the processes of manufacturing and operation, glass
fibre should be isolated by means of a decorative coating.

Downloads

Download data is not yet available.

References

1. Токарський О. Методичні засади визначення оптимального часу роботи рятувальника. ВІСТІ Донецького гірничого інституту. Донецький національний технічний університет, м. Покровськ., 2022. Т. 1, № 50. С. 14–20.

2. Diao, Z., Kraus, M., Brunner, R., Dirks, J. H., & Spatz, J. P. (2016). Nanostructured Stealth Surfaces for Visible and NearInfrared Light. Nano letters, 16(10), 6610–6616. https://doi.org/10.1021/acs.nanolett.6b03308 DOI: https://doi.org/10.1021/acs.nanolett.6b03308

3. Glyva, V., Krasnianskyi, G., Dovhanovskyi, M., & Krasnianskyi, T. (2024). Розроблення і дослідження захисних властивостей матеріалів для блокування електромагнітних випромінювань інфрачервоного діапазону. Системи управління, навігації та зв ‘язку. Збірник наукових праць, 3(77), 203-205. https://doi.org/https://doi.org/10.26906/SUNZ.2024.3.20 DOI: https://doi.org/10.26906/SUNZ.2024.3.203

4. Qu, Y., Li, Q., Cai, L. et al. Thermal camouflage based on the phase-changing material GST. Light Sci Appl 7, 26 (2018). https://doi.org/10.1038/s41377-018-0038-5 DOI: https://doi.org/10.1038/s41377-018-0038-5

5. Ho Kun Woo, Kai Zhou, Su-Kyung Kim, Adrian Manjarrez, Muhammad Jahidul Hoque, Tae-Yeon Seong, Lili Cai (2022). Visibly Transparent and Infrared Reflective Coatings for Personal Thermal Management and Thermal Camouflage. Advanced Functional Materials.V. 32, (38). https://doi.org/10.1002/adfm.202201432 DOI: https://doi.org/10.1002/adfm.202201432

6. Burdeina, N., Levchenko, L., Korduba, I., Shamanskyi, S., Biruk, Y., Dovhanovskyi, M., Zozulya, S., Klymchuk, A., Nikolaiev, K., & Osadchyi, D. (2024). Applying heterogeneous building materials for the protection of people against electromagnetic radiation. Eastern-European Journal of Enterprise Technologies, 5(10 (131), 45–52. https://doi.org/10.15587/1729-4061.2024.313629 DOI: https://doi.org/10.15587/1729-4061.2024.313629

7. ISO 15831:2007 Clothing — Physiological effects — Measurement of thermal insulation by means of a thermal manikin. (EN ISO 15831:2004), ID.

Published

2025-03-12

Most read articles by the same author(s)

1 2 > >>