ESTIMATION INFLUENCING BRIGHTNESS OF AGRICULTURAL CULTURES SPACES PICTURES ON SIZES FRACTALS DIMENSIONS AND INDEXES NDVI
DOI:
https://doi.org/10.26906/SUNZ.2024.3.005Keywords:
estimation the state of agricultural cultures, brightness of space picture, fractal dimension, index NDVIAbstract
Spaces pictures in-use for monitoring agricultural earths can have a different contrast that can influence on quality through estimation of the state agricultural cultures. The subject of the study in the article is estimation of influencing brightness spaces pictures on the sizes fractals dimensions and indexes NDVI. The object of the study is the spaces pictures of agricultural cultures satellite Sentinel-2 with a different brightness. The goal is estimation influencing brightness spaces pictures of the fields sown by agricultural cultures, on the sizes fractals dimensions and indexes NDVI. The following results were obtained. Conducted estimation maximal and minimum values of brightness at the change brightness initial pictures of the different channel (channel b4 and b8) satellite Sentinel-2 and it is certain that for the different ducting of satellite Sentinel-2 the increase and diminishing of brightness on different influences on their conduct. Change range of brightness on a picture at the change brightness also depends on the channel of satellite Sentinel-2. Influence brightness spaces pictures is investigational on the sizes fractals dimensions and indexes NDVI. It is certain that during the increase brightness picture the mean values indexes of NDVI diminish. Thus a difference in the size index of NDVI takes place in the second sign after a comma that does not allow to estimate the state of sowing at the large values brightness by the index NDVI. During diminishing brightness the mean values of indexes NDVI are at first sharply multiplied, and then achieve the initial values approximately, that allows to estimate the state of sowing. Show that for the picture channel b4 middle fractals dimension during the increase of brightness at first is increased, and then diminish, but the values change not considerably. Thus a difference in the size fractal dimension takes place in the third sign after a comma. Character changes of middle fractals dimensions during diminishing brightness of picture channel b4 it is not forecast. It is certain that mean values of fractals dimensions picture channel b8 during the increase brightness is increased droningly and forecast, and during diminishing brightness mean values of fractals dimensions at first insignificantly, and then achieve the initial values, that it is also possible to forecast. Conclusions. The conducted researches showed that application average fractals dimensions for estimation of the state sowing allows to conduct the analysis spaces pictures at the greater change their brightness as compared to the use average indexes NDVI.Downloads
References
Тараріко О.Г., Сиротенко О.В., Ільєнко Т.В., Кучма Т.Л. Агроекологічний супутниковий моніторинг. К.: Аграр. наука, 2019. 204 с.
Copernicus Europe’s eyes on Earth, Sentinel-2. Copernicus Europe’s eyes on Earth [Електронний ресурс]. – Режим доступу: https://www.copernicus.eu/en/about-copernicus/infrastructure/discover-our-satellites – 09.05.2024 р.
ESA Sentinel Online, Spatial Resolution. ESA Sentinel Online [Електронний ресурс]. – Режим доступу: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial – 09.05.2024 р.
Черепанов А.С. Вегетационные индексы. Геоматика. 2011. № 2(11). С. 98 – 102.
Марюшко М.В., Пащенко Р.Е., Коблюк Н.С. Моніторинг сільськогосподарських культур із застосуванням космічних знімків SENTINEL-2. Радіоелектронні і комп’ютер-ні системи. 2019. №1(89). С. 99 – 108. DOI: 10.32620/reks.2019.1.11.
Feder J. Fractals. New York: Springer US, 1988. 263 p. DOI: https://doi.org/10.1007/978-1-4899-2124-6.
Доля Г.Н., Иванов В.К., Кучук Г.А., Пащенко Р.Э. и др. Фрактальный анализ процессов, структур и сигналов / Под. ред. Р.Э. Пащенко. Х.: “НЭО Экоперспектива”, 2006. 348 с.
Марюшко М.В., Пащенко Р.Е. Фрактальний аналіз космічних знімків SENTINEL-2 для моніторингу сільськогосподарських культур. Радіоелектронні і комп’ютерні системи. 2020. №4(96). С. 34 – 47. DOI: https://doi.org/10.32620/reks.2020.4.03.
Пащенко Р.Е., Марюшко М.В. Оцінка стану різних сільськогосподарських культур з використанням фрактального аналізу. Сучасні інформаційні системи. 2023. Том. 7, № 3. С. 81 – 88. DOI: https://doi.org/10.20998/2522-9052.2023.3.12
Кроновер Р.М. Фракталы и хаос в динамических системах. М.: Постмаркет, 2000. 352 с.