MODEL FOR PROCESSING SPECTRAL DATA OF ASTRONOMICAL OBJECTS

Authors

  • Dmytro Nikolaienko
  • Tetiana Filimonchuk
  • Halyna Maistrenko

DOI:

https://doi.org/10.26906/SUNZ.2024.2.135

Keywords:

spectral analysis, parallel and distributed computing, big data processing, high-speed code

Abstract

Topicality. Currently, there is a direction that is related to the optimization of data processing of astronomical objects, in particular, spectral data obtained with the help of radio telescopes. The amount of data that needs to be processed is a homogeneous flow of information that can be processed using distributed computing, thus increasing the speed of processing by a fairly significant amount. The purpose of this work is to build a model for processing spectral data of astronomical objects using distributed computing. The object of research is the process of processing spectral data obtained from astronomical objects. The subject of the study is currently existing models and methods of spectral data processing. Results. A model for processing spectral data of astronomical objects is proposed, which recommends the use of distributed processing algorithms and specialized software, namely the CUDA environment and the OpenCV library to reduce the processing time of large data sets and more rational use of computing resources. Conclusion. The use of the proposed tool in the model allows to improve and speed up the processing of spectral data of astronomical objects using distributed algorithms.

Downloads

References

Подорожняк А.О., Гриб Р.М., Домнін С.В. (2013), "Морфологічна обробка цифрових зображень з телескопів", Сучасна спеціальна техніка, № 1(32), С. 34-39.

Бандурка О.І., Свинчук О.В. (2022), "Метод ідентифікації космічних знімків для прогнозування лісових пожеж", Системи управління, навігації та зв’язку. Збірник наукових праць, Т. 1 (67). С. 13-18. doi:https://doi.org/ 10.26906/SUNZ.2022.1.013.

Анисенко О.В. (2017), "Розвиток дистанційного зондування землі в Україні", Агросвіт, № 7, С. 52-59.

IRAF 2.17.1. IRAF Community Distribution. URL: https://iraf-community.github.io

Astropy. URL: https://www.astropy.org

CUDA Toolkit - Free Tools and Training. NVIDIA Developer. URL: https://developer.nvidia.com/cuda-toolkit

Published

2024-04-30

Most read articles by the same author(s)